Prefix tree

The trie, or prefix tree, is a data structure for storing strings or other sequences in a way that allows for a fast look-up. In its simplest form it can be used as a list of keywords or a dictionary.
By associating each string with an object it can be used as an alternative to a hashmap. The name 'trie' comes from the word 'retrieval'.

The basic idea behind a trie is that each successive letter is stored as a separate node. To find out if the word 'cat' is in the list you start at the root and look up the 'c' node. Having found
the 'c' node you search the list of c's children for an 'a' node, and so on. To differentiate between 'cat' and 'catalog' each word is ended by a special delimiter.

The figure below shows a schematic representation of a partial trie:

Implementation

The fastest way to implement this is with fixed size arrays. Unfortunately this only works if you know which characters can show up in the sequences. For keywords with 26 letters its a fast but space
consuming option, for unicode strings its pretty much impossible.

Instead of fixed sizes arrays you can use a linked list at each node. This has obvious space advantages, since no more empty spaces are stored. Unfortunately searching a long linked list is rather
slow. For example to find the word 'zzz' you might need 3 times 26 steps.

Faster trie algorithms have been devised that lie somewhere between these two extremes in terms of speed and space consumption. These can be found by searching google.

Fun & games with prefix trees

Prefix trees are a bit of an overlooked data structure with lots of interesting possibilities.

Storage

By storing values at each leaf node you can use them as a kind of alternative hashmap, although when working with unicode strings a hashmap will greatly outperform a trie.

As a dictionary

Looking up if a word is in a trie takes O(n) operations, where n is the length of the word. Thus - for array implementations - the lookup speed doesn't change with increasing trie size.

Word completion

Word completion is straightforward to implement using a trie: simply find the node corresponding to the first few letters, and then collape the subtree into a list of possible endings.

This can be used in autocompleting user input in text editors or the T9 dictionary on your phone

Censoring strings

Given a large list of swear words and a string to censor a trie offers a speed advantage over a simple array of strings. If the swear word can appear anywhere in the string you'll need to attempt
to match it from any possible starting offset. With a string of m characters and a list of n words this would mean m*n string comparisons.

Using a trie you can attempt to find a match from each given offset in the string, this means m trie lookups. Since the speed of a trie lookup scales well with an increasing number of words this is
considerably faster than the array lookup.

Java linked list implementation

Just for fun, here's a java linked list implementation. Keep in mind that this is a fairly slow implementation. For serious speed boosts you'll need to investigate double or triple-array tries.

Please note: the version below is a simplified version intended only to give some insight into the workings of the Trie. For the full version please see theDownloads
section
.

publicclass Trie

{

    /**

     * The delimiter used in this word to tell where words end. Without a proper delimiter either A.

     * a lookup for 'win' would return false if the list also contained 'windows', or B. a lookup

     * for 'mag' would return true if the only word in the list was 'magnolia'

     *

     * The delimiter should never occur in a word added to the trie.

     */

    public
final static
char DELIMITER = '\u0001';



    /**

     * Creates a new Trie.

     */

    public Trie()

    {

        root =
new Node('r');

        size = 0;

    }



    /**

     * Adds a word to the list.

     * @param word The word to add.

     * @return True if the word wasn't in the list yet

     */

    public
boolean add(String word)

    {

        if (add(root, word+ DELIMITER,
0))

        {

            size++;

            int n
= word.length();

            if
(n > maxDepth) maxDepth
= n;

            return
true;

        }

        return
false;

    }



    /*

     * Does the real work of adding a word to the trie

     */

    private
boolean add(Node root, String word,int offset)

    {

        if (offset== word.length())return
false;

        int c
= word.charAt(offset);



        // Search for node to add to

        Node last =
null, next = root.firstChild;

        while
(next !=
null)

        {

            if
(next.value < c)

            {

                // Not found yet, continue searching

                last = next;

                next = next.nextSibling;

            }

            else
if (next.value
== c)

            {

                // Match found, add remaining word to this node

                return add(next, word, offset+
1);

            }

            // Because of the ordering of the list getting here means we won't

            // find a match

            else
break;

        }



        // No match found, create a new node and insert

        Node node =
new Node(c);

        if (last==
null)

        {

            // Insert node at the beginning of the list (Works for next == null

            // too)

            root.firstChild = node;

            node.nextSibling = next;

        }

        else

        {

            // Insert between last and next

            last.nextSibling = node;

            node.nextSibling = next;

        }



        // Add remaining letters

        for (int i= offset
+ 1; i< word.length(); i++)

        {

            node.firstChild =new Node(word.charAt(i));

            node = node.firstChild;

        }

        return
true;

    }



    /**

     * Searches for a word in the list.

     *

     * @param word The word to search for.

     * @return True if the word was found.

     */

    public
boolean isEntry(String word)

    {

        if (word.length()==
0)

            throw
new IllegalArgumentException("Word can't be empty");

        return isEntry(root, w+ DELIMITER,
0);

    }



    /*

     * Does the real work of determining if a word is in the list

     */

    private
boolean isEntry(Node root,
String word, int offset)

    {

        if (offset== word.length())return
true;

        int c
= word.charAt(offset);



        // Search for node to add to

        Node next = root.firstChild;

        while
(next !=
null)

        {

            if
(next.value < c) next= next.nextSibling;

            else
if (next.value
== c)
return isEntry(next, word, offset +1);

            else
return false;

        }

        return
false;

    }



    /**

     * Returns the size of this list;

     */

    public
int size()

    {

        return size;

    }



    /**

     * Returns all words in this list starting with the given prefix

     *

     * @param prefix The prefix to search for.

     * @return All words in this list starting with the given prefix, or if no such words are found,

     *         an array containing only the suggested prefix.

     */

    public
String[] suggest(String prefix)

    {

        return suggest(root, prefix,0);

    }



    /*

     * Recursive function for finding all words starting with the given prefix

     */

    private
String[] suggest(Node root,String word,
int offset)

    {

        if (offset== word.length())

        {

            ArrayList<String> words
= new ArrayList<String>(size);

            char[] chars=
new
char[maxDepth];

            for
(int i
= 0; i < offset; i++)

                chars[i]
= word.charAt(i);

            getAll(root, words, chars, offset);

            return words.toArray(newString[words.size()]);

        }

        int c
= word.charAt(offset);



        // Search for node to add to

        Node next = root.firstChild;

        while
(next !=
null)

        {

            if
(next.value < c) next= next.nextSibling;

            else
if (next.value
== c)
return suggest(next, word, offset +1);

            else
break;

        }

        return
new String[]{ word
};

    }



    /**

     * Searches a string for words present in the trie and replaces them with stars (asterixes).

     * @param z The string to censor

     */

    public
String censor(String s)

    {

        if (size==
0)
return s;

        String z = s.toLowerCase();

        int n
= z.length();

        StringBuilder buffer =
new StringBuilder(n);

        int match;

        char star
= '*';

        for (int i=
0; i < n;)

        {

            match = longestMatch(root, z, i,0,
0);

            if
(match > 0)

            {

                for
(int j
= 0; j < match; j++)

                {

                    buffer.append(star);

                    i++;

                }

            }

            else

            {

                buffer.append(s.charAt(i++));

            }

        }

        return buffer.toString();

    }



    /*

     * Finds the longest matching word in the trie that starts at the given offset...

     */

    private
int longestMatch(Node root,
String word, int offset,int depth,
int maxFound)

    {

        // Uses delimiter = first in the list!

        Node next = root.firstChild;

        if (next.value== DELIMITER) maxFound
= depth;

        if (offset== word.length())return
maxFound;

        int c
= word.charAt(offset);



        while
(next !=
null)

        {

            if
(next.value < c) next= next.nextSibling;

            else
if (next.value
== c)
return longestMatch(next, word,

                offset + 1, depth
+ 1, maxFound);

            else
return maxFound;

        }

        return maxFound;

    }



    /*

     * Represents a node in the trie. Because a node's children are stored in a linked list this

     * data structure takes the odd structure of node with a firstChild and a nextSibling.

     */

    private
class Node

    {

        public
int value;

        public Node firstChild;

        public Node nextSibling;



        public Node(int value)

        {

            this.value= value;

            firstChild =
null;

            nextSibling =
null;

        }

    }





    private Node root;

    private
int size;

    private
int maxDepth; // Not exact, but bounding for the maximum

}

Please note: the code given above is intended only to give some insight into the workings of the Trie. For the full version of the class please see theDownloads
section
.

Prefix tree的更多相关文章

  1. Leetcode: Implement Trie (Prefix Tree) && Summary: Trie

    Implement a trie with insert, search, and startsWith methods. Note: You may assume that all inputs a ...

  2. leetcode面试准备:Implement Trie (Prefix Tree)

    leetcode面试准备:Implement Trie (Prefix Tree) 1 题目 Implement a trie withinsert, search, and startsWith m ...

  3. 【LeetCode】208. Implement Trie (Prefix Tree)

    Implement Trie (Prefix Tree) Implement a trie with insert, search, and startsWith methods. Note:You ...

  4. [LeetCode] 208. Implement Trie (Prefix Tree) ☆☆☆

    Implement a trie with insert, search, and startsWith methods. Note:You may assume that all inputs ar ...

  5. 笔试算法题(39):Trie树(Trie Tree or Prefix Tree)

    议题:TRIE树 (Trie Tree or Prefix Tree): 分析: 又称字典树或者前缀树,一种用于快速检索的多叉树结构:英文字母的Trie树为26叉树,数字的Trie树为10叉树:All ...

  6. Trie树(Prefix Tree)介绍

    本文用尽量简洁的语言介绍一种树形数据结构 -- Trie树. 一.什么是Trie树 Trie树,又叫字典树.前缀树(Prefix Tree).单词查找树 或 键树,是一种多叉树结构.如下图: 上图是一 ...

  7. 字典树(查找树) leetcode 208. Implement Trie (Prefix Tree) 、211. Add and Search Word - Data structure design

    字典树(查找树) 26个分支作用:检测字符串是否在这个字典里面插入.查找 字典树与哈希表的对比:时间复杂度:以字符来看:O(N).O(N) 以字符串来看:O(1).O(1)空间复杂度:字典树远远小于哈 ...

  8. LeetCode208 Implement Trie (Prefix Tree). LeetCode211 Add and Search Word - Data structure design

    字典树(Trie树相关) 208. Implement Trie (Prefix Tree) Implement a trie with insert, search, and startsWith  ...

  9. 【leetcode】208. Implement Trie (Prefix Tree 字典树)

    A trie (pronounced as "try") or prefix tree is a tree data structure used to efficiently s ...

随机推荐

  1. JavaWeb 文件 上传 下载

    文件上传下载对于一个网站来说,重要性不言而喻.今天来分享一个JavaWeb方式实现的文件上传下载的小例子. 项目依赖 项目目录 工作流程 文件上传 表单处的设置 服务器端 上传功能的实现 upload ...

  2. 剑指offer面试题4 替换空格(c)

  3. Maven 介绍、安装使用

    简介         Maven是一个强大的构建工具,能够帮我们自动化构建过程,从清理.编译.测试到生成报告,再到打包和部署.只要使用Maven配置好项目,然后执行命令(如mvn clean inst ...

  4. 使用Swift开发一个MacOS的菜单状态栏App

    猴子原创,欢迎转载.转载请注明: 转载自Cocos2Der-CSDN,谢谢! 原文地址: http://blog.csdn.net/cocos2der/article/details/52054107 ...

  5. Quick-Cocos2d-X 捋一捋框架流程

    猴子原创,欢迎转载.转载请注明: 转载自Cocos2D开发网–Cocos2Dev.com,谢谢! 原文地址: http://www.cocos2dev.com/?p=535 一直比较关注Quick L ...

  6. 学习笔记-JS公开课二

    typeof运算符的使用 JS中内置对象Array/Date/Math/String可以看成引用类型 做如下测试: <scripttype="text/javascript" ...

  7. Uva - 512 - Spreadsheet Tracking

    Data in spreadsheets are stored in cells, which are organized in rows (r) and columns (c). Some oper ...

  8. 见过的最全的iOS面试题

    之前看了很多面试题,感觉要不是不够就是过于冗余,于是我将网上的一些面试题进行了删减和重排,现在分享给大家.(题目来源于网络,侵删) 1. Object-c的类可以多重继承么?可以实现多个接口么?Cat ...

  9. UNIX环境高级编程——Linux系统调用列表

    以下是Linux系统调用的一个列表,包含了大部分常用系统调用和由系统调用派生出的的函数.这可能是你在互联网上所能看到的唯一一篇中文注释的Linux系统调用列表,即使是简单的字母序英文列表,能做到这么完 ...

  10. 5、使用Libgdx设计一个简单的游戏------雨滴

    (原文:http://www.libgdx.cn/topic/49/5-%E4%BD%BF%E7%94%A8libgdx%E8%AE%BE%E8%AE%A1%E4%B8%80%E4%B8%AA%E7% ...