Prefix tree

The trie, or prefix tree, is a data structure for storing strings or other sequences in a way that allows for a fast look-up. In its simplest form it can be used as a list of keywords or a dictionary.
By associating each string with an object it can be used as an alternative to a hashmap. The name 'trie' comes from the word 'retrieval'.

The basic idea behind a trie is that each successive letter is stored as a separate node. To find out if the word 'cat' is in the list you start at the root and look up the 'c' node. Having found
the 'c' node you search the list of c's children for an 'a' node, and so on. To differentiate between 'cat' and 'catalog' each word is ended by a special delimiter.

The figure below shows a schematic representation of a partial trie:

Implementation

The fastest way to implement this is with fixed size arrays. Unfortunately this only works if you know which characters can show up in the sequences. For keywords with 26 letters its a fast but space
consuming option, for unicode strings its pretty much impossible.

Instead of fixed sizes arrays you can use a linked list at each node. This has obvious space advantages, since no more empty spaces are stored. Unfortunately searching a long linked list is rather
slow. For example to find the word 'zzz' you might need 3 times 26 steps.

Faster trie algorithms have been devised that lie somewhere between these two extremes in terms of speed and space consumption. These can be found by searching google.

Fun & games with prefix trees

Prefix trees are a bit of an overlooked data structure with lots of interesting possibilities.

Storage

By storing values at each leaf node you can use them as a kind of alternative hashmap, although when working with unicode strings a hashmap will greatly outperform a trie.

As a dictionary

Looking up if a word is in a trie takes O(n) operations, where n is the length of the word. Thus - for array implementations - the lookup speed doesn't change with increasing trie size.

Word completion

Word completion is straightforward to implement using a trie: simply find the node corresponding to the first few letters, and then collape the subtree into a list of possible endings.

This can be used in autocompleting user input in text editors or the T9 dictionary on your phone

Censoring strings

Given a large list of swear words and a string to censor a trie offers a speed advantage over a simple array of strings. If the swear word can appear anywhere in the string you'll need to attempt
to match it from any possible starting offset. With a string of m characters and a list of n words this would mean m*n string comparisons.

Using a trie you can attempt to find a match from each given offset in the string, this means m trie lookups. Since the speed of a trie lookup scales well with an increasing number of words this is
considerably faster than the array lookup.

Java linked list implementation

Just for fun, here's a java linked list implementation. Keep in mind that this is a fairly slow implementation. For serious speed boosts you'll need to investigate double or triple-array tries.

Please note: the version below is a simplified version intended only to give some insight into the workings of the Trie. For the full version please see theDownloads
section
.

publicclass Trie

{

    /**

     * The delimiter used in this word to tell where words end. Without a proper delimiter either A.

     * a lookup for 'win' would return false if the list also contained 'windows', or B. a lookup

     * for 'mag' would return true if the only word in the list was 'magnolia'

     *

     * The delimiter should never occur in a word added to the trie.

     */

    public
final static
char DELIMITER = '\u0001';



    /**

     * Creates a new Trie.

     */

    public Trie()

    {

        root =
new Node('r');

        size = 0;

    }



    /**

     * Adds a word to the list.

     * @param word The word to add.

     * @return True if the word wasn't in the list yet

     */

    public
boolean add(String word)

    {

        if (add(root, word+ DELIMITER,
0))

        {

            size++;

            int n
= word.length();

            if
(n > maxDepth) maxDepth
= n;

            return
true;

        }

        return
false;

    }



    /*

     * Does the real work of adding a word to the trie

     */

    private
boolean add(Node root, String word,int offset)

    {

        if (offset== word.length())return
false;

        int c
= word.charAt(offset);



        // Search for node to add to

        Node last =
null, next = root.firstChild;

        while
(next !=
null)

        {

            if
(next.value < c)

            {

                // Not found yet, continue searching

                last = next;

                next = next.nextSibling;

            }

            else
if (next.value
== c)

            {

                // Match found, add remaining word to this node

                return add(next, word, offset+
1);

            }

            // Because of the ordering of the list getting here means we won't

            // find a match

            else
break;

        }



        // No match found, create a new node and insert

        Node node =
new Node(c);

        if (last==
null)

        {

            // Insert node at the beginning of the list (Works for next == null

            // too)

            root.firstChild = node;

            node.nextSibling = next;

        }

        else

        {

            // Insert between last and next

            last.nextSibling = node;

            node.nextSibling = next;

        }



        // Add remaining letters

        for (int i= offset
+ 1; i< word.length(); i++)

        {

            node.firstChild =new Node(word.charAt(i));

            node = node.firstChild;

        }

        return
true;

    }



    /**

     * Searches for a word in the list.

     *

     * @param word The word to search for.

     * @return True if the word was found.

     */

    public
boolean isEntry(String word)

    {

        if (word.length()==
0)

            throw
new IllegalArgumentException("Word can't be empty");

        return isEntry(root, w+ DELIMITER,
0);

    }



    /*

     * Does the real work of determining if a word is in the list

     */

    private
boolean isEntry(Node root,
String word, int offset)

    {

        if (offset== word.length())return
true;

        int c
= word.charAt(offset);



        // Search for node to add to

        Node next = root.firstChild;

        while
(next !=
null)

        {

            if
(next.value < c) next= next.nextSibling;

            else
if (next.value
== c)
return isEntry(next, word, offset +1);

            else
return false;

        }

        return
false;

    }



    /**

     * Returns the size of this list;

     */

    public
int size()

    {

        return size;

    }



    /**

     * Returns all words in this list starting with the given prefix

     *

     * @param prefix The prefix to search for.

     * @return All words in this list starting with the given prefix, or if no such words are found,

     *         an array containing only the suggested prefix.

     */

    public
String[] suggest(String prefix)

    {

        return suggest(root, prefix,0);

    }



    /*

     * Recursive function for finding all words starting with the given prefix

     */

    private
String[] suggest(Node root,String word,
int offset)

    {

        if (offset== word.length())

        {

            ArrayList<String> words
= new ArrayList<String>(size);

            char[] chars=
new
char[maxDepth];

            for
(int i
= 0; i < offset; i++)

                chars[i]
= word.charAt(i);

            getAll(root, words, chars, offset);

            return words.toArray(newString[words.size()]);

        }

        int c
= word.charAt(offset);



        // Search for node to add to

        Node next = root.firstChild;

        while
(next !=
null)

        {

            if
(next.value < c) next= next.nextSibling;

            else
if (next.value
== c)
return suggest(next, word, offset +1);

            else
break;

        }

        return
new String[]{ word
};

    }



    /**

     * Searches a string for words present in the trie and replaces them with stars (asterixes).

     * @param z The string to censor

     */

    public
String censor(String s)

    {

        if (size==
0)
return s;

        String z = s.toLowerCase();

        int n
= z.length();

        StringBuilder buffer =
new StringBuilder(n);

        int match;

        char star
= '*';

        for (int i=
0; i < n;)

        {

            match = longestMatch(root, z, i,0,
0);

            if
(match > 0)

            {

                for
(int j
= 0; j < match; j++)

                {

                    buffer.append(star);

                    i++;

                }

            }

            else

            {

                buffer.append(s.charAt(i++));

            }

        }

        return buffer.toString();

    }



    /*

     * Finds the longest matching word in the trie that starts at the given offset...

     */

    private
int longestMatch(Node root,
String word, int offset,int depth,
int maxFound)

    {

        // Uses delimiter = first in the list!

        Node next = root.firstChild;

        if (next.value== DELIMITER) maxFound
= depth;

        if (offset== word.length())return
maxFound;

        int c
= word.charAt(offset);



        while
(next !=
null)

        {

            if
(next.value < c) next= next.nextSibling;

            else
if (next.value
== c)
return longestMatch(next, word,

                offset + 1, depth
+ 1, maxFound);

            else
return maxFound;

        }

        return maxFound;

    }



    /*

     * Represents a node in the trie. Because a node's children are stored in a linked list this

     * data structure takes the odd structure of node with a firstChild and a nextSibling.

     */

    private
class Node

    {

        public
int value;

        public Node firstChild;

        public Node nextSibling;



        public Node(int value)

        {

            this.value= value;

            firstChild =
null;

            nextSibling =
null;

        }

    }





    private Node root;

    private
int size;

    private
int maxDepth; // Not exact, but bounding for the maximum

}

Please note: the code given above is intended only to give some insight into the workings of the Trie. For the full version of the class please see theDownloads
section
.

Prefix tree的更多相关文章

  1. Leetcode: Implement Trie (Prefix Tree) && Summary: Trie

    Implement a trie with insert, search, and startsWith methods. Note: You may assume that all inputs a ...

  2. leetcode面试准备:Implement Trie (Prefix Tree)

    leetcode面试准备:Implement Trie (Prefix Tree) 1 题目 Implement a trie withinsert, search, and startsWith m ...

  3. 【LeetCode】208. Implement Trie (Prefix Tree)

    Implement Trie (Prefix Tree) Implement a trie with insert, search, and startsWith methods. Note:You ...

  4. [LeetCode] 208. Implement Trie (Prefix Tree) ☆☆☆

    Implement a trie with insert, search, and startsWith methods. Note:You may assume that all inputs ar ...

  5. 笔试算法题(39):Trie树(Trie Tree or Prefix Tree)

    议题:TRIE树 (Trie Tree or Prefix Tree): 分析: 又称字典树或者前缀树,一种用于快速检索的多叉树结构:英文字母的Trie树为26叉树,数字的Trie树为10叉树:All ...

  6. Trie树(Prefix Tree)介绍

    本文用尽量简洁的语言介绍一种树形数据结构 -- Trie树. 一.什么是Trie树 Trie树,又叫字典树.前缀树(Prefix Tree).单词查找树 或 键树,是一种多叉树结构.如下图: 上图是一 ...

  7. 字典树(查找树) leetcode 208. Implement Trie (Prefix Tree) 、211. Add and Search Word - Data structure design

    字典树(查找树) 26个分支作用:检测字符串是否在这个字典里面插入.查找 字典树与哈希表的对比:时间复杂度:以字符来看:O(N).O(N) 以字符串来看:O(1).O(1)空间复杂度:字典树远远小于哈 ...

  8. LeetCode208 Implement Trie (Prefix Tree). LeetCode211 Add and Search Word - Data structure design

    字典树(Trie树相关) 208. Implement Trie (Prefix Tree) Implement a trie with insert, search, and startsWith  ...

  9. 【leetcode】208. Implement Trie (Prefix Tree 字典树)

    A trie (pronounced as "try") or prefix tree is a tree data structure used to efficiently s ...

随机推荐

  1. Android使用HttpUrlConnection请求服务器发送数据详解

    HttpUrlConnection是java内置的api,在java.net包下,那么,它请求网络同样也有get请求和post请求两种方式.最常用的Http请求无非是get和post,get请求可以获 ...

  2. 【安卓开发】Facebook工程师是如何改进他们Android客户端的

    原文出处: Facebook   译文出处:penkzhou   欢迎分享原创到伯乐头条 作为世界上最大的社交网络,Facebook的Android客户端面临着各种各样的使用环境(地理环境.Andro ...

  3. 【移动开发】EditText输入字数限制总结(包括中文输入内存溢出的解决方法)

    限定EditText输入个数的解决方案很多,但是一般主要考虑两点,也就是处理两件事:(1)不同语言字符(英文.中文等)处理方式(2)输入字符达到数目后,是否仍然允许用户输入 第一点,涉及的东东其实蛮多 ...

  4. 5.关于QT中的网络编程,QTcpSocket,QUdpSocket

     1 新建一个项目:TCPServer.pro A  修改TCPServer.pro,注意:如果是想使用网络库,需要加上network SOURCES += \ TcpServer.cpp \ T ...

  5. Python Skelve 库

    在Python中有一个简单的轻量级的类似于Key-value的存储型数据库,那就是Skelve.下面就来一起看一看这个库的简单的使用吧. 小例子 我本人比较喜欢从例子出发,然后再来研究这些内部的行为. ...

  6. UNIX网络编程——原始套接字的魔力【上】

    基于原始套接字编程 在开发面向连接的TCP和面向无连接的UDP程序时,我们所关心的核心问题在于数据收发层面,数据的传输特性由TCP或UDP来保证: 也就是说,对于TCP或UDP的程序开发,焦点在Dat ...

  7. UILabel设定行间距方法

    NSString *textStr = @"iPhone规定:任何应用想访问麦克风,必须被授权麦克风服务.请进入"设置"->"隐私"->& ...

  8. 在javascript里 string 和 int 类型转换

    string 转换为int 类型 (1)tostring()方法 var   x=10    a   =   x.toString() //输出为string类型 alert(typeof(a)); ...

  9. Dynamics CRM 2013 SP1 客户表单界面上联系人subgrid上的添加现有联系人功能缺失

    CRM2013打了SP1的同学会发现一个问题,客户关联联系人的1:N关系,在表单subgrid中添加联系人时,只能新建而无法添加现有联系人,而这个现象在之前的版本中是没有的. 我们通过工具ribbon ...

  10. MO_GLOBAL - EBS R12 中 Multi Org 设计的深入研究 (2)

    这是多组织访问的第二篇文章,翻译自Anil Passi的Multi Org R12 我们都知道,在Oracle Release 12中多组织模型(Multi Org)会被改变, 它被叫作多组织访问控制 ...