【BZOJ3529】【SDOI2014】数表
Time Limit: 1000 ms Memory Limit: 512 MB
Description
有一张n×m的数表,其第i行第j列 (1≤i≤n,1≤j≤m)的数值为能同时整除i和j的所有自然数之和。
现在给定a,计算数表中不大于a的数之和。
input
输入包含多组数据。
输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(a≤\(10^9\))描述一组数据。
output
对每组数据,输出一行一个整数,表示答案模\(2^31\)的值。
sample input
2
4 4 3
10 10 5
sample output
20
148
HINT
\(n,m≤10^5,Q≤2∗10^4\)
solution
\(a\)的限制很烦,但其实如果最后式子推出来的话,我们可以离线来处理
那就先看去掉这个限制的问题怎么解决咯
先把式子列出来
ans&=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\sum\limits_{d|i,d|j}d\\
&=\sum\limits_{i=1}{n}\sum\limits_{j=1}{m}\sum\limits_{d=1}^{min(n,m)}f(d) [gcd(i,j) = d]&(f(d) = \sum\limits_{x|d}x)\\
&=\sum\limits_{d=1}^{min(n,m)}f(d)\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}[gcd(i,j)=1]\\
&=\sum\limits_{d=1}^{min(n,m)}f(d)\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}\sum\limits_{k|i,k|j}\mu(k)&(\sum\limits_{k|gcd(i,j)}\mu(k) = [gcd(i,j)=1])\\
&=\sum\limits_{d=1}^{min(n,m)}f(d)\sum\limits_{k=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}\lfloor\frac{\lfloor \frac{n}{d} \rfloor}{k}\rfloor\lfloor\frac{\lfloor \frac{m}{d} \rfloor}{k}\rfloor\mu(k)\\
&=\sum\limits_{d=1}^{min(n,m)}f(d)\sum\limits_{k=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}\lfloor\frac{\lfloor n \rfloor}{dk}\rfloor\lfloor\frac{\lfloor m \rfloor}{dk}\rfloor\mu(k)\\
&=\sum\limits_{t=1}^{min(n,m)}\lfloor\frac{\lfloor n \rfloor}{t}\rfloor\lfloor\frac{\lfloor m \rfloor}{t}\rfloor\sum\limits_{k|t}\mu(k)&(t=dk)\\
&=\sum\limits_{t=1}^{min(n,m)}\lfloor\frac{\lfloor n \rfloor}{t}\rfloor\lfloor\frac{\lfloor m \rfloor}{t}\rfloor g(t)&(g(x) = \sum\limits_{kp=x}f(p)\mu(k))\\
\end{aligned}
\]
然后前面下取整的东西分块搞定就好了,\(g(t)\)的话,因为可以通过枚举约数来求,复杂度是根号的,所以就直接枚举来求就好了,\(\mu\)的话可以筛出来,那么……
考虑\(f\)怎么求
有个约数和定理
f(n)=\prod\limits_{i=1}^{k}\sum\limits_{j=0}^{a_i}p_i^j
\]
\(f\)的话首先是个积性函数,我们在筛\(\mu\)的时候想顺便把这个也筛出来
考虑\(f(d)\)的值,如果说\(d\)是质数的话答案显然是\(d+1\),下面讨论\(d\)为合数的情况
设\(d=i * p\),其中\(p\)为质数
\(p\nmid i\),那么\(p\)和\(i\)互质,所以\(f(d) = f(p) * f(i)\)
\(p\mid i\),设\(i = t * p^x\) ,那么根据约数和定理,我们可以得
\[f(i*p) = f(t)f(p^{x+1}) = f(t)\sum\limits_{i=0}^{x+1}p^i
\]然后我们把\(p^0\)(也就是1)拿出来,得到
\[f(i * p) = f(t) + f(t)*\sum\limits_{i=1}^{x+1}p^i = f(t) + f(t)*f(p^x)*p
\]然后\(i = t * p^x\),所以\(f(t) * f(p^x) = f(i)\)
所以最后就是\(f(d) = f(t) + f(i) * p\)
然后就可以筛出\(f(d)\)啦
剩下的东西
现在加上\(a\)的限制,其实就是离线处理
我们先将所有的询问按照\(a\)的大小排序,然后从小到大处理
因为分块的时候我们要用到的是\(g(x)\)的前缀和,所以用一个树状数组来处理
将\(f(x)\)排个序,枚举的时候只枚举到\(f(x)<a\),然后枚举另一个约数求出\(g\),丢到树状数组里面去
求答案的时候直接查询就好了
others
这题的话如果直接取模会被卡常。。因为模数很特殊所以可以自然溢出来取模,最后记得给ans&上一个2147483647
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int MAXN=1e5+10;
const int MOD=2147483647;
struct Q{
int id,n,m,a;
friend bool operator <(Q x,Q y)
{return x.a<y.a;}
}q[MAXN];
int miu[MAXN],g[MAXN],p[MAXN],f[MAXN],loc[MAXN];
ll c[MAXN];
int ans[MAXN];
bool vis[MAXN];
int n,m,T,maxn,a,pos,nowans;
int prework(int n);
int ksm(int x,int y);
int add(int x,ll delta);
ll query(int x);
bool cmp(int x,int y){return f[x]<f[y];}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
scanf("%d",&T);
maxn=0;
for (int i=1;i<=T;++i){
scanf("%d%d%d",&q[i].n,&q[i].m,&q[i].a);
q[i].id=i;
if (q[i].n>q[i].m) swap(q[i].n,q[i].m);
maxn=max(maxn,q[i].n);
}
prework(maxn);
sort(q+1,q+1+T);
for (int i=1;i<=maxn;++i) loc[i]=i;
sort(loc+1,loc+1+maxn,cmp);
int now=1;
for (int o=1;o<=T;++o){
n=q[o].n;
m=q[o].m;
a=q[o].a;
while (now<=maxn&&f[loc[now]]<=a){
for (int t=1;t*loc[now]<=maxn;++t)
add(t*loc[now],f[loc[now]]*miu[t]);
++now;
}
nowans=pos=0;
for (int i=1;i<=n;i=pos+1){
pos=min(n/(n/i),m/(m/i));
nowans+=(n/i)*(m/i)*(query(pos)-query(i-1));
}
ans[q[o].id]=nowans&MOD;
}
for (int i=1;i<=T;++i) printf("%lld\n",ans[i]);
}
int prework(int n){
miu[1]=1; f[1]=1;
memset(vis,false,sizeof(vis));
int cnt=0,tmp,tot;
for (int i=2;i<=n;++i){
if (!vis[i]){
p[++cnt]=i;
miu[i]=-1;
f[i]=i+1;
}
for (int j=1;j<=cnt&&p[j]*i<=n;++j){
vis[i*p[j]]=true;
if (i%p[j]){
miu[i*p[j]]=-miu[i];
f[i*p[j]]=f[i]*(1+p[j]);
}
else{
miu[i*p[j]]=0;
tmp=i;tot=1;
while (tmp%p[j]==0) tmp/=p[j];
f[i*p[j]]=f[tmp]+p[j]*f[i];
}
}
}
}
int add(int x,ll delta){
for (;x<=maxn;x+=x&-x)
c[x]+=delta;
}
ll query(int x){
ll ret=0;
for (;x;x-=x&-x)
ret+=c[x];
return ret;
}
【BZOJ3529】【SDOI2014】数表的更多相关文章
- [bzoj3529][Sdoi2014]数表_树状数组_莫比乌斯反演
数表 bzoj-3529 Sdoi-2014 题目大意:n*m的数表,第i行第j列的数是同时整除i和j的所有自然数之和.给定a,求数表中所有不超过a的和. 注释:$1\le n,m \le 10^5$ ...
- BZOJ3529 [Sdoi2014]数表 【莫比乌斯反演】
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2151 Solved: 1080 [Submit][Status ...
- bzoj千题计划205:bzoj3529: [Sdoi2014]数表
http://www.lydsy.com/JudgeOnline/problem.php?id=3529 有一张n*m的数表,其第i行第j列(1 < =i < =n,1 < =j & ...
- BZOJ3529 [Sdoi2014]数表【莫比乌斯反演】
Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...
- 莫比乌斯反演套路二--(n/d)(m/d)给提出来--BZOJ3529: [Sdoi2014]数表
一个数表上第i行第j列表示能同时整除i和j的自然数,Q<=2e4个询问,每次问表上1<=x<=n,1<=y<=m区域内所有<=a的数之和.n,m<=1e5,a ...
- BZOJ3529: [Sdoi2014]数表(莫比乌斯反演,离线)
Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...
- BZOJ3529: [Sdoi2014]数表
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3529 挺恶心的数论TAT... 设f[i]是i的约数和,这个可以nln(n)扫出来. ans= ...
- bzoj3529: [Sdoi2014]数表 莫比乌斯反演
题意:求\(\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))(gcd(i,j)<=a),f(x)是x的因子和函数\) 先考虑没有限制的情况,考虑枚举gcd为x,那么有\(\ ...
- BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)
题意 题目链接 Sol 首先不考虑\(a\)的限制 我们要求的是 \[\sum_{i = 1}^n \sum_{j = 1}^m \sigma(gcd(i, j))\] 用常规的套路可以化到这个形式 ...
- 题解【bzoj3529 [SDOI2014]数表】
Description \(T\) 组询问,定义 \(F(n)=\sum\limits_{d|n}d\).每次给出 \(n,m,a\) 求 \[\sum\limits_{i=1,j=1,F(\gcd( ...
随机推荐
- go get报错unrecognized import path “golang.org/x/net/context”…
今天安装gin框架,首先下载gin,命令如下:go get github.com/mattn/go-sqlite3 结果报错: package golang.org/x/net/context: un ...
- Ubuntu 配置FTP服务器
第三方的文件传输软件用着很不爽,想着自己搭建一个FTP来干活. 首先检查是否已经安装了FTP,输入命令: vsftpd -v 可以查看版本,如果没有安装,无法执行. 安装FTP p.p1 { mar ...
- VS2015安装时问题汇总
安装VS2015遇到teamexplorer严重错误 在控制台管理员权限执行: fsutil behavior set SymlinkEvaluation L2L:1 L2R:1 R2L:1 R2R: ...
- 常见JedisConnectionException异常分析
异常内容:我看了很多人的博客,千篇一律都是说redis.conf文件的配置问题,发现并不能解决我的问题,今天写这个博客讲解一下我的解决办法: 遇到这个问题第一步:查看虚拟机的防火墙是否关闭,测试方法就 ...
- spring注解-@Transactional事务几点注意
这里面有几点需要大家留意:A. 一个功能是否要事务,必须纳入设计.编码考虑.不能仅仅完成了基本功能就ok.B. 如果加了事务,必须做好开发环境测试(测试环境也尽量触发异常.测试回滚),确保事务生效.C ...
- hdu1061(2015-N1):1.快速幂;2.找规律
1.快速幂 原理:求a的b次方,将b转化为二进制数,该二进制位第i位的权是2^(i-1), 例如 11的二进制是1011 11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1 因此,我们将a¹ ...
- KV型内存数据库Redis
Redis是开源的高性能内存Key-Value数据库, 可以提供事务和持久化支持, 并提供了TTL(time to life)服务. Redis采用单线程数据操作+非阻塞IO的模型,非阻塞IO提供了较 ...
- 试着简单易懂记录synchronized this object Class的区别,模拟ConcurrentHashMap
修饰静态方法默认获取当前class的锁,同步方法没有释放的锁,不影响class其他非同步方法的调用,也不影响不同锁的同步方法,更不影响使用class的其他属性. package thread.base ...
- spring oauth2 ,spring security整合oauth2.0 JdbcTokenStore实现 解决url-pattern .do .action
参考以下两个文章: http://www.cnblogs.com/0201zcr/p/5328847.html http://wwwcomy.iteye.com/blog/2230265 web.xm ...
- vim使用教程
vim的学习曲线相当的大(参看各种文本编辑器的学习曲线),所以,如果你一开始看到的是一大堆VIM的命令分类,你一定会对这个编辑器失去兴趣的.下面的文章翻译自<Learn Vim Progress ...