单源最短路径---Bellman-Ford算法
传送门:
Bellman-Ford
1.Dijkstra算法的局限性
像上图,如果用dijkstra算法的话就会出错,因为如果从1开始,第一步dist[2] = 7, dist[3] = 5;在其中找出最小的边是dist[3] = 5;然后更新dist[2] = 0,最终得到dist[2] = 0,dist[3] = 5,而实际上dist[3] = 2;所以如果图中含有负权值,dijkstra失效
2.Bellman-Ford算法思想
适用前提:没有负环(或称为负权值回路),因为有负环的话距离为负无穷。
构造一个最短路径长度数组序列dist1[u] dist2[u]...distn-1[u],其中:
dist1[u]为从源点v0出发到终点u的只经过一条边的最短路径长度,并有dist1[u] = Edge[v0][u]
dist2[u]为从源点v0出发最多经过不构成负权值回路的两条边到终点u的最短路径长度
dist3[u]为从源点v0出发最多经过不构成负权值回路的三条边到终点u的最短路径长度
................
distn-1[u]为从源点v0出发最多经过不构成负权值回路的n-1条边到终点u的最短路径长度
算法最终目的是计算出distn-1[u],即为源点到顶点u的最短路径长度
初始:dist1[u] = Edge[v0][u]
递推:distk[u] = min(distk-1[u], min{distk-1[j] + Edge[j][u]})(松弛操作,迭代n-2次)
3.本质思想:
在从distk-1[u]递推到distk[u]的时候,Bellman-Ford算法的本质是对每条边<u, v>进行判断:设边<u, v>的权值为w(u, v),如果边<u, v>的引入会使得distk-1[v]的值再减小,就要修改distk-1[v],即:如果distk-1[u] + w(u, v) < distk-1[v],,那么distk[v] = distk-1[u] + w(u, v),这个称为一次松弛
所以递推公式可改为:
初始:dist0[u] = INF dist0[v0] = 0(v0是源点)
递推:对于每条边(u, v) distk[v] = min(distk-1[v], distk-1[u] + w(u, v))(松弛操作,迭代n-1次)
如果迭代n-1次后,再次迭代,如果此时还有dist会更新,说明存在负环。
无负环的时候,迭代更新次数最多为n-1次,所以设置一个更新变量可以在不更新的时候直接跳出循环
拓展:
Bellman-Ford算法还能用来求最长路或者判断正环,思路是dist数组含义是从原点出发到其他每个顶点的最长路径的长度,初始时,各个顶点dist为0,在从distk-1[u]递推到distk[u]的时候,Bellman-Ford算法的本质是对每条边<u, v>进行判断:设边<u, v>的权值为w(u, v),如果边<u, v>的引入会使得distk-1[v]的值再增加,就要修改distk-1[v],即:如果distk-1[u] + w(u, v) > distk-1[v],,那么distk[v] = distk-1[u] + w(u, v)。例题:POJ-1860
4.代码实现:时间复杂度O(nm)(n为点数,m为边数)
输入:
7 10
0 1 6
0 2 5
0 3 5
1 4 -1
2 1 -2
2 4 1
3 2 -2
3 5 -1
4 6 3
5 6 3
输出:
从0到1距离是: 1 0->3->2->1
从0到2距离是: 3 0->3->2
从0到3距离是: 5 0->3
从0到4距离是: 0 0->3->2->1->4
从0到5距离是: 4 0->3->5
从0到6距离是: 3 0->3->2->1->4->6
不存在负环
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<sstream>
using namespace std;
typedef long long ll;
const int maxn = + ;
const int INF = << ;
int T, n, m, cases;
struct edge
{
int u, v, w;
};
edge a[maxn];
int path[maxn], d[maxn];
bool Bellman(int v0)
{
for(int i = ; i < n; i++)d[i] = INF, path[i] = -;
d[v0] = ;
for(int i = ; i < n; i++)//迭代n次,如果第n次还在更新,说明有负环
{
bool update = ;
for(int j = ; j < m; j++)
{
int x = a[j].u, y = a[j].v;
//cout<<x<<" "<<y<<" "<<a[j].w<<endl;
if(d[x] < INF && d[x] + a[j].w < d[y])
{
d[y] = d[x] + a[j].w;
path[y] = x;
update = ;
if(i == n - )//说明第n次还在更新
{
return true;//返回真,真的存在负环
}
}
}
if(!update)break;//如果没更新了,说明已经松弛完毕
}
for(int i = ; i < n; i++)
{
if(i == v0)continue;
printf("从%d到%d距离是:%2d ", v0, i, d[i]);
stack<int>q;
int x = i;
while(path[x] != -)
{
q.push(x);
x = path[x];
}
cout<<v0;
while(!q.empty())
{
cout<<"->"<<q.top();
q.pop();
}
cout<<endl;
}
return false;
}
int main()
{
cin >> n >> m;
for(int i = ; i < m; i++)cin >> a[i].u >> a[i].v >> a[i].w;
if(Bellman())cout<<"存在负环"<<endl;
else cout<<"不存在负环"<<endl;
return ;
}
单源最短路径---Bellman-Ford算法的更多相关文章
- 单源最短路径(dijkstra算法)php实现
做一个医学项目,当中在病例评分时会用到单源最短路径的算法.单源最短路径的dijkstra算法的思路例如以下: 如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点.那么( ...
- 【算法导论】单源最短路径之Dijkstra算法
Dijkstra算法解决了有向图上带正权值的单源最短路径问题,其运行时间要比Bellman-Ford算法低,但适用范围比Bellman-Ford算法窄. 迪杰斯特拉提出的按路径长度递增次序来产生源点到 ...
- 【算法导论】单源最短路径之Bellman-Ford算法
单源最短路径指的是从一个顶点到其它顶点的具有最小权值的路径.我们之前提到的广度优先搜索算法就是一种无权图上执行的最短路径算法,即在所有的边都具有单位权值的图的一种算法.单源最短路径算法可以解决图中任意 ...
- 单源最短路径:Dijkstra算法(堆优化)
前言:趁着对Dijkstra还有点印象,赶快写一篇笔记. 注意:本文章面向已有Dijkstra算法基础的童鞋. 简介 单源最短路径,在我的理解里就是求从一个源点(起点)到其它点的最短路径的长度. 当然 ...
- 0016:单源最短路径(dijkstra算法)
题目链接:https://www.luogu.com.cn/problem/P4779 题目描述:给定一个 n 个点,m 条有向边的带非负权图,计算从 s 出发,到每个点的距离. 这道题就是一个单源最 ...
- 单源最短路径问题-Dijkstra算法
同样是层序遍历,在每次迭代中挑出最小的设置为已知 ===================================== 2017年9月18日10:00:03 dijkstra并不是完全的层序遍历 ...
- 单源最短路径的Bellman-Ford 算法
1.算法标签 BFS 2.算法概念 Bellman-Ford算法有这么一个先验知识在里面,那就是最短路径至多在N步之内,其中N为节点数,否则说明图中有负权值的回路,这样的图是找不到最短路径的.因此Be ...
- 单源最短路径问题(dijkstra算法 及其 优化算法(优先队列实现))
#define _CRT_SECURE_NO_WARNINGS /* 7 10 0 1 5 0 2 2 1 2 4 1 3 2 2 3 6 2 4 10 3 5 1 4 5 3 4 6 5 5 6 9 ...
- Til the Cows Come Home(poj 2387 Dijkstra算法(单源最短路径))
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 32824 Accepted: 11098 Description Bes ...
- Dijkstra算法解决单源最短路径
单源最短路径问题:给定一个带权有向图 G = (V, E), 其中每条边的权是一个实数.另外,还给定 V 中的一个顶点,称为源.现在要计算从源到其他所有各顶点的最短路径长度.这里的长度是指路上各边权之 ...
随机推荐
- uuid原理及使用例子
项目中常用UUID作为唯一标识码 UUID是128位整数(16字节)的全局唯一标识符 由以下几部分的组合: 当前日期和时间(UUID的第一个部分与时间有关,如果你在生成一个UUID之后,过几秒又生成一 ...
- 开源一套基于vue全家桶的webapp
一.设计初衷 原本今年就是有一个打算要做一套商业的作品,恰巧目前离职,在找工作的过程中,所以有时间闲下来沉淀对原本的知识进行梳理. 说一个题外话,就是由于博主之前是很早一批使用vue的用户,也就是距今 ...
- APP专业的开发公司都有这样一套开发流程,强烈建议收藏!
下面让我们来剖析到底是如何开发App的呢? 1.App界面设计开发: 通过客户提出需求,需要头脑风暴得出合适的方案和设计理念; 确认页面风格,确定整个界面的布局.关键截面的设计.文字.及其他的设计 G ...
- Springmvc 视频学习地址
http://www.icoolxue.com/album/show/216/
- HTTP协议----URI,URL,持久连接,管道与Cookie
URI与URL有什么不同呢? URI:Universal Resource Identifier统一资源标志符 URL:Universal Resource Locator统一资源定位器 URI是用来 ...
- 在Winform混合式框架中整合外部API接口的调用
在我们常规的业务处理中,一般内部处理的接口多数都是以数据库相关的,基于混合式开发的Winform开发框架,虽然在客户端调用的时候,一般选择也是基于Web API的调用,不过后端我们可能不仅仅是针对我们 ...
- Alpha冲刺第十二天
Alpha冲刺第十二天 站立式会议 项目进展 项目核心功能,如学生基本信息管理模块,学生信用信息模块,奖惩事务管理模块等等都已完成,测试工作大体结束. 问题困难 项目结束后对项目的阶段性总结缺乏一定的 ...
- 轻量级django 一
from django.http import HttpResponse from django.conf.urls import url from django.conf import settin ...
- Angular.js 1++快速上手
AngularJS诞生于2009年,由Misko Hevery 等人创建,后为Goole所收购.是一款优秀的前端JS框架.AngularJS有着诸多特性,最为核心的是:MVC,撗块化,自动化双向数据绑 ...
- ThreadLocal源码分析:(三)remove()方法
在ThreadLocal的get(),set()的时候都会清除线程ThreadLocalMap里所有key为null的value. 而ThreadLocal的remove()方法会先将Entry中对k ...