传送门:

Dijkstra

Bellman-Ford

SPFA

Floyd

1.Dijkstra算法的局限性

像上图,如果用dijkstra算法的话就会出错,因为如果从1开始,第一步dist[2] = 7, dist[3] = 5;在其中找出最小的边是dist[3] = 5;然后更新dist[2] = 0,最终得到dist[2] = 0,dist[3] = 5,而实际上dist[3] = 2;所以如果图中含有负权值,dijkstra失效

2.Bellman-Ford算法思想

适用前提:没有负环(或称为负权值回路),因为有负环的话距离为负无穷。

构造一个最短路径长度数组序列dist1[u] dist2[u]...distn-1[u],其中:
dist1[u]为从源点v0出发到终点u的只经过一条边的最短路径长度,并有dist1[u] = Edge[v0][u]

dist2[u]为从源点v0出发最多经过不构成负权值回路的两条边到终点u的最短路径长度

dist3[u]为从源点v0出发最多经过不构成负权值回路的三条边到终点u的最短路径长度

................

distn-1[u]为从源点v0出发最多经过不构成负权值回路的n-1条边到终点u的最短路径长度

算法最终目的是计算出distn-1[u],即为源点到顶点u的最短路径长度

初始:dist1[u] = Edge[v0][u]

递推:distk[u] = min(distk-1[u], min{distk-1[j] + Edge[j][u]})(松弛操作,迭代n-2次)

3.本质思想:
在从distk-1[u]递推到distk[u]的时候,Bellman-Ford算法的本质是对每条边<u, v>进行判断:设边<u, v>的权值为w(u, v),如果边<u, v>的引入会使得distk-1[v]的值再减小,就要修改distk-1[v],即:如果distk-1[u] + w(u, v) < distk-1[v],,那么distk[v] = distk-1[u] + w(u, v),这个称为一次松弛

所以递推公式可改为:

初始:dist0[u] = INF dist0[v0] = 0(v0是源点)

递推:对于每条边(u, v) distk[v] = min(distk-1[v], distk-1[u] + w(u, v))(松弛操作,迭代n-1次)

如果迭代n-1次后,再次迭代,如果此时还有dist会更新,说明存在负环。

无负环的时候,迭代更新次数最多为n-1次,所以设置一个更新变量可以在不更新的时候直接跳出循环

拓展:

Bellman-Ford算法还能用来求最长路或者判断正环,思路是dist数组含义是从原点出发到其他每个顶点的最长路径的长度,初始时,各个顶点dist为0,在从distk-1[u]递推到distk[u]的时候,Bellman-Ford算法的本质是对每条边<u, v>进行判断:设边<u, v>的权值为w(u, v),如果边<u, v>的引入会使得distk-1[v]的值再增加,就要修改distk-1[v],即:如果distk-1[u] + w(u, v) > distk-1[v],,那么distk[v] = distk-1[u] + w(u, v)。例题:POJ-1860

4.代码实现:时间复杂度O(nm)(n为点数,m为边数)

输入:

7 10
0 1 6
0 2 5
0 3 5
1 4 -1
2 1 -2
2 4 1
3 2 -2
3 5 -1
4 6 3
5 6 3

输出:

从0到1距离是: 1   0->3->2->1
从0到2距离是: 3   0->3->2
从0到3距离是: 5   0->3
从0到4距离是: 0   0->3->2->1->4
从0到5距离是: 4   0->3->5
从0到6距离是: 3   0->3->2->1->4->6
不存在负环

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<sstream>
using namespace std;
typedef long long ll;
const int maxn = + ;
const int INF = << ;
int T, n, m, cases;
struct edge
{
int u, v, w;
};
edge a[maxn];
int path[maxn], d[maxn];
bool Bellman(int v0)
{
for(int i = ; i < n; i++)d[i] = INF, path[i] = -;
d[v0] = ;
for(int i = ; i < n; i++)//迭代n次,如果第n次还在更新,说明有负环
{
bool update = ;
for(int j = ; j < m; j++)
{
int x = a[j].u, y = a[j].v;
//cout<<x<<" "<<y<<" "<<a[j].w<<endl;
if(d[x] < INF && d[x] + a[j].w < d[y])
{
d[y] = d[x] + a[j].w;
path[y] = x;
update = ;
if(i == n - )//说明第n次还在更新
{
return true;//返回真,真的存在负环
}
}
}
if(!update)break;//如果没更新了,说明已经松弛完毕
}
for(int i = ; i < n; i++)
{
if(i == v0)continue;
printf("从%d到%d距离是:%2d ", v0, i, d[i]);
stack<int>q;
int x = i;
while(path[x] != -)
{
q.push(x);
x = path[x];
}
cout<<v0;
while(!q.empty())
{
cout<<"->"<<q.top();
q.pop();
}
cout<<endl;
}
return false;
}
int main()
{
cin >> n >> m;
for(int i = ; i < m; i++)cin >> a[i].u >> a[i].v >> a[i].w;
if(Bellman())cout<<"存在负环"<<endl;
else cout<<"不存在负环"<<endl;
return ;
}

单源最短路径---Bellman-Ford算法的更多相关文章

  1. 单源最短路径(dijkstra算法)php实现

    做一个医学项目,当中在病例评分时会用到单源最短路径的算法.单源最短路径的dijkstra算法的思路例如以下: 如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点.那么( ...

  2. 【算法导论】单源最短路径之Dijkstra算法

    Dijkstra算法解决了有向图上带正权值的单源最短路径问题,其运行时间要比Bellman-Ford算法低,但适用范围比Bellman-Ford算法窄. 迪杰斯特拉提出的按路径长度递增次序来产生源点到 ...

  3. 【算法导论】单源最短路径之Bellman-Ford算法

    单源最短路径指的是从一个顶点到其它顶点的具有最小权值的路径.我们之前提到的广度优先搜索算法就是一种无权图上执行的最短路径算法,即在所有的边都具有单位权值的图的一种算法.单源最短路径算法可以解决图中任意 ...

  4. 单源最短路径:Dijkstra算法(堆优化)

    前言:趁着对Dijkstra还有点印象,赶快写一篇笔记. 注意:本文章面向已有Dijkstra算法基础的童鞋. 简介 单源最短路径,在我的理解里就是求从一个源点(起点)到其它点的最短路径的长度. 当然 ...

  5. 0016:单源最短路径(dijkstra算法)

    题目链接:https://www.luogu.com.cn/problem/P4779 题目描述:给定一个 n 个点,m 条有向边的带非负权图,计算从 s 出发,到每个点的距离. 这道题就是一个单源最 ...

  6. 单源最短路径问题-Dijkstra算法

    同样是层序遍历,在每次迭代中挑出最小的设置为已知 ===================================== 2017年9月18日10:00:03 dijkstra并不是完全的层序遍历 ...

  7. 单源最短路径的Bellman-Ford 算法

    1.算法标签 BFS 2.算法概念 Bellman-Ford算法有这么一个先验知识在里面,那就是最短路径至多在N步之内,其中N为节点数,否则说明图中有负权值的回路,这样的图是找不到最短路径的.因此Be ...

  8. 单源最短路径问题(dijkstra算法 及其 优化算法(优先队列实现))

    #define _CRT_SECURE_NO_WARNINGS /* 7 10 0 1 5 0 2 2 1 2 4 1 3 2 2 3 6 2 4 10 3 5 1 4 5 3 4 6 5 5 6 9 ...

  9. Til the Cows Come Home(poj 2387 Dijkstra算法(单源最短路径))

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 32824   Accepted: 11098 Description Bes ...

  10. Dijkstra算法解决单源最短路径

    单源最短路径问题:给定一个带权有向图 G = (V, E), 其中每条边的权是一个实数.另外,还给定 V 中的一个顶点,称为源.现在要计算从源到其他所有各顶点的最短路径长度.这里的长度是指路上各边权之 ...

随机推荐

  1. 收集nodejs经典组件:

    mysql功能简介:mysql- node.js平台mysql驱动,支持事务.连接池.集群.sql注入检测.多做参数传递写法等特性.主页地址:https://github.com/felixge/no ...

  2. 学习JAVA的几大优处

    首先:简单:我们都知道Java是目前使用较为广泛的网络编程语言之一.他容易学而且很好用,如果你学习过C++语言,你会觉得C++和 Java很像,因为Java中许多基本语句的语法和C++一样,像常用的循 ...

  3. 【Flask】 利用uWSGI和Nginx发布Flask应用

    因为Flask比较容易上手,之前也拿flask写过几个小项目,不过当时天真地以为只要在服务器上nohup跑一个python脚本就算是成功发布了这个flask项目.实际上这还面临很多问题,比如并发性不好 ...

  4. Java多线程:CopyOnWrite容器

    一.什么是CopyOnWrite容器 CopyOnWrite容器即写时复制的容器.通俗的理解是当我们往一个容器添加元素的时候,不直接往当前容器添加,而是先将当前容器进行Copy,复制出一个新的容器,然 ...

  5. [poj3984]迷宫问题_bfs

    迷宫问题 题目大意:给你一个5*5的矩阵,求左上角到左下角的最短路径. 注释:0或1的矩阵,1表示不能走,0表示能走,保证有唯一最短路径. 想法:bfs爆搜练习题.通过其实点,定义方向数组,然后进行b ...

  6. node.js与比特币(typescript实现)

    BTC中的utxo模型 BTC中引入了许多创新的概念与技术,区块链.PoW共识.RSA加密.萌芽阶段的智能合约等名词是经常被圈内人所提及,诚然这些创新的实现使得BTC变成了一种有可靠性和安全性保证的封 ...

  7. [日常] AtCoder Beginner Contest 075 翻车实录

    别问我为啥要写一篇ABC的游记... 周日打算CF开黑于是就打算先打打ABC找回手速... 进场秒掉 $A$ 和 $B$ , 小暴力一脸偷税 然后开 $C$ ...woc求桥? 怎么办啊我好像突然忘了 ...

  8. Hibernate之深入持久化对象

    Hibernate是一个彻底的O/R Mapping 框架.之所以说彻底,是因为相对于其他的 框架 ,如Spring JDBC,iBatis 需要手动的管理SQL语句,Hibernate采用了完全 面 ...

  9. stringify 字符串转化成json方法

    参照原文:http://www.cnblogs.com/damonlan/ http://www.jb51.net/article/29893.htm stringify的作用主要是序列化对象(转化为 ...

  10. nyoj 公约数和公倍数

    公约数和公倍数 时间限制:1000 ms  |  内存限制:65535 KB 难度:1   描述 小明被一个问题给难住了,现在需要你帮帮忙.问题是:给出两个正整数,求出它们的最大公约数和最小公倍数. ...