传送门:

Dijkstra

Bellman-Ford

SPFA

Floyd

1.Dijkstra算法的局限性

像上图,如果用dijkstra算法的话就会出错,因为如果从1开始,第一步dist[2] = 7, dist[3] = 5;在其中找出最小的边是dist[3] = 5;然后更新dist[2] = 0,最终得到dist[2] = 0,dist[3] = 5,而实际上dist[3] = 2;所以如果图中含有负权值,dijkstra失效

2.Bellman-Ford算法思想

适用前提:没有负环(或称为负权值回路),因为有负环的话距离为负无穷。

构造一个最短路径长度数组序列dist1[u] dist2[u]...distn-1[u],其中:
dist1[u]为从源点v0出发到终点u的只经过一条边的最短路径长度,并有dist1[u] = Edge[v0][u]

dist2[u]为从源点v0出发最多经过不构成负权值回路的两条边到终点u的最短路径长度

dist3[u]为从源点v0出发最多经过不构成负权值回路的三条边到终点u的最短路径长度

................

distn-1[u]为从源点v0出发最多经过不构成负权值回路的n-1条边到终点u的最短路径长度

算法最终目的是计算出distn-1[u],即为源点到顶点u的最短路径长度

初始:dist1[u] = Edge[v0][u]

递推:distk[u] = min(distk-1[u], min{distk-1[j] + Edge[j][u]})(松弛操作,迭代n-2次)

3.本质思想:
在从distk-1[u]递推到distk[u]的时候,Bellman-Ford算法的本质是对每条边<u, v>进行判断:设边<u, v>的权值为w(u, v),如果边<u, v>的引入会使得distk-1[v]的值再减小,就要修改distk-1[v],即:如果distk-1[u] + w(u, v) < distk-1[v],,那么distk[v] = distk-1[u] + w(u, v),这个称为一次松弛

所以递推公式可改为:

初始:dist0[u] = INF dist0[v0] = 0(v0是源点)

递推:对于每条边(u, v) distk[v] = min(distk-1[v], distk-1[u] + w(u, v))(松弛操作,迭代n-1次)

如果迭代n-1次后,再次迭代,如果此时还有dist会更新,说明存在负环。

无负环的时候,迭代更新次数最多为n-1次,所以设置一个更新变量可以在不更新的时候直接跳出循环

拓展:

Bellman-Ford算法还能用来求最长路或者判断正环,思路是dist数组含义是从原点出发到其他每个顶点的最长路径的长度,初始时,各个顶点dist为0,在从distk-1[u]递推到distk[u]的时候,Bellman-Ford算法的本质是对每条边<u, v>进行判断:设边<u, v>的权值为w(u, v),如果边<u, v>的引入会使得distk-1[v]的值再增加,就要修改distk-1[v],即:如果distk-1[u] + w(u, v) > distk-1[v],,那么distk[v] = distk-1[u] + w(u, v)。例题:POJ-1860

4.代码实现:时间复杂度O(nm)(n为点数,m为边数)

输入:

7 10
0 1 6
0 2 5
0 3 5
1 4 -1
2 1 -2
2 4 1
3 2 -2
3 5 -1
4 6 3
5 6 3

输出:

从0到1距离是: 1   0->3->2->1
从0到2距离是: 3   0->3->2
从0到3距离是: 5   0->3
从0到4距离是: 0   0->3->2->1->4
从0到5距离是: 4   0->3->5
从0到6距离是: 3   0->3->2->1->4->6
不存在负环

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<sstream>
using namespace std;
typedef long long ll;
const int maxn = + ;
const int INF = << ;
int T, n, m, cases;
struct edge
{
int u, v, w;
};
edge a[maxn];
int path[maxn], d[maxn];
bool Bellman(int v0)
{
for(int i = ; i < n; i++)d[i] = INF, path[i] = -;
d[v0] = ;
for(int i = ; i < n; i++)//迭代n次,如果第n次还在更新,说明有负环
{
bool update = ;
for(int j = ; j < m; j++)
{
int x = a[j].u, y = a[j].v;
//cout<<x<<" "<<y<<" "<<a[j].w<<endl;
if(d[x] < INF && d[x] + a[j].w < d[y])
{
d[y] = d[x] + a[j].w;
path[y] = x;
update = ;
if(i == n - )//说明第n次还在更新
{
return true;//返回真,真的存在负环
}
}
}
if(!update)break;//如果没更新了,说明已经松弛完毕
}
for(int i = ; i < n; i++)
{
if(i == v0)continue;
printf("从%d到%d距离是:%2d ", v0, i, d[i]);
stack<int>q;
int x = i;
while(path[x] != -)
{
q.push(x);
x = path[x];
}
cout<<v0;
while(!q.empty())
{
cout<<"->"<<q.top();
q.pop();
}
cout<<endl;
}
return false;
}
int main()
{
cin >> n >> m;
for(int i = ; i < m; i++)cin >> a[i].u >> a[i].v >> a[i].w;
if(Bellman())cout<<"存在负环"<<endl;
else cout<<"不存在负环"<<endl;
return ;
}

单源最短路径---Bellman-Ford算法的更多相关文章

  1. 单源最短路径(dijkstra算法)php实现

    做一个医学项目,当中在病例评分时会用到单源最短路径的算法.单源最短路径的dijkstra算法的思路例如以下: 如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点.那么( ...

  2. 【算法导论】单源最短路径之Dijkstra算法

    Dijkstra算法解决了有向图上带正权值的单源最短路径问题,其运行时间要比Bellman-Ford算法低,但适用范围比Bellman-Ford算法窄. 迪杰斯特拉提出的按路径长度递增次序来产生源点到 ...

  3. 【算法导论】单源最短路径之Bellman-Ford算法

    单源最短路径指的是从一个顶点到其它顶点的具有最小权值的路径.我们之前提到的广度优先搜索算法就是一种无权图上执行的最短路径算法,即在所有的边都具有单位权值的图的一种算法.单源最短路径算法可以解决图中任意 ...

  4. 单源最短路径:Dijkstra算法(堆优化)

    前言:趁着对Dijkstra还有点印象,赶快写一篇笔记. 注意:本文章面向已有Dijkstra算法基础的童鞋. 简介 单源最短路径,在我的理解里就是求从一个源点(起点)到其它点的最短路径的长度. 当然 ...

  5. 0016:单源最短路径(dijkstra算法)

    题目链接:https://www.luogu.com.cn/problem/P4779 题目描述:给定一个 n 个点,m 条有向边的带非负权图,计算从 s 出发,到每个点的距离. 这道题就是一个单源最 ...

  6. 单源最短路径问题-Dijkstra算法

    同样是层序遍历,在每次迭代中挑出最小的设置为已知 ===================================== 2017年9月18日10:00:03 dijkstra并不是完全的层序遍历 ...

  7. 单源最短路径的Bellman-Ford 算法

    1.算法标签 BFS 2.算法概念 Bellman-Ford算法有这么一个先验知识在里面,那就是最短路径至多在N步之内,其中N为节点数,否则说明图中有负权值的回路,这样的图是找不到最短路径的.因此Be ...

  8. 单源最短路径问题(dijkstra算法 及其 优化算法(优先队列实现))

    #define _CRT_SECURE_NO_WARNINGS /* 7 10 0 1 5 0 2 2 1 2 4 1 3 2 2 3 6 2 4 10 3 5 1 4 5 3 4 6 5 5 6 9 ...

  9. Til the Cows Come Home(poj 2387 Dijkstra算法(单源最短路径))

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 32824   Accepted: 11098 Description Bes ...

  10. Dijkstra算法解决单源最短路径

    单源最短路径问题:给定一个带权有向图 G = (V, E), 其中每条边的权是一个实数.另外,还给定 V 中的一个顶点,称为源.现在要计算从源到其他所有各顶点的最短路径长度.这里的长度是指路上各边权之 ...

随机推荐

  1. Ubuntu上安装和使用RabbitMQ

    1. 安装RabbitMQ服务软件包 输入以下命令进行安装 #apt install rabbitmq-server 2.安装完成后在rabbitMQ中添加用户 命令:#rabbitmqctl add ...

  2. 漫谈Java IO之基础篇

    Java的网络编程如果不是专门搞服务器性能开发或者消息分发,几乎可能涉及不到.但是它却是面试找工作必问的一个知识点,涵盖的知识体系也非常广泛,从Java底层IO原理到操作系统内核组成,再到网络TCP. ...

  3. centos7环境下mysql5.7的安装与配置

    最近无事闲来折腾虚拟机,以前都是折腾云服务器,现在自己捣捣.看到mysql的教程蛮好的,准备做个笔记.原文来自mysql5.7的安装与配置(centos7环境) 第一步:下载mysql [root@M ...

  4. SQL语法语句总结

    一.SQL语句语法 ALTER TABLE ALTER TABLE 用来更新已存在表的结构. ALTER TABLE tablename (ADD|DROP column datatype [NULL ...

  5. (Matlab)GPU计算所需的配置

    电脑:联想扬天 M4400 系统:win 7 X64 硬件:NVIDIA GeForce GT 740M 独显2G     硬件驱动: 软件: Matlab 2015a   %需要安装 Paralle ...

  6. NEO从入门到开窗(4) - NEO CLI

    一.唠叨两句 首先,我们都知道区块链是去中心化的,其中节点都是对等节点,每个节点都几乎有完整的区块链特性,CLI就是NEO的一个命令行对等节点,当然也有GUI这个项目,图形化的NEO节点.节点之间需要 ...

  7. C语言数据类型作业

    一.PTA实验作业 题目1:7-4 打印菱形图案 1. 本题PTA提交列表 2. 设计思路 1.定义m,n(用于计算空格数,输出"* "数),i,j,k(用于循环) 2.输入n,并 ...

  8. 201621123040《Java程序设计》第3周学习总结

    1.本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词,如类.对象.封装等 面向对象的思想 对象 类 1.2 用思维导图或者Onenote或其他工具将这些关键词组织起来. 掌握的还不够深 ...

  9. Python 科学计算-介绍

    Python 科学计算 作者 J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/ 最新版本的 IPython notebook 课程文 ...

  10. 201621123057 《Java程序设计》第5周学习总结

    1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 接口,interface,implements,方法签名,has-a,Comparable,Comparator. 1.2 尝试 ...