【BZOJ1040】骑士(动态规划)
【BZOJ1040】骑士(动态规划)
题面
题解
对于每一组厌恶的关系
显然是连边操作
如果是一棵树的话
很显然的树型\(dp\)
但是,现在相当于有很多个基环
也就是在一棵树的基础上再加了一条边
这个时候怎么办,
暴力拆掉基环(拆掉任意一条边)
跑两遍\(dp\)
计算出强制不选两个点中某一个的最大值
此时就是这个基环的最大值
(不用拆掉所有的边,因为只要拆掉一条边之后可以用树型\(dp\)来控制)
可能存在多个联通块
所以要算多遍,然后求和
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 1200000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=2;
int n,a[MAX];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
long long f[MAX][2];
int U,V,L;
int fa[MAX],Cri[MAX],tot;
int getf(int x){return x==fa[x]?x:fa[x]=getf(fa[x]);}
void dfs(int u,int ff)
{
f[u][1]=a[u];f[u][0]=0;
for(int i=h[u];i;i=e[i].next)
{
if(i==L||i==(L^1))continue;
int v=e[i].v;
if(v==ff)continue;
dfs(v,u);
f[u][0]+=max(f[v][0],f[v][1]);
f[u][1]+=f[v][0];
}
}
int main()
{
n=read();
for(int i=1;i<=n;++i)fa[i]=i;
for(int i=1,u;i<=n;++i)
{
a[i]=read(),u=read();Add(u,i),Add(i,u);
if(getf(u)!=getf(i))fa[getf(u)]=getf(i);
else Cri[++tot]=cnt-1;
}
long long ans=0;
for(int i=1;i<=tot;++i)
{
long long ss=0;
U=e[Cri[i]].v;V=e[Cri[i]^1].v;
L=Cri[i];
dfs(U,0);ss=max(ss,f[U][0]);
dfs(V,0);ss=max(ss,f[V][0]);
ans+=ss;
}
printf("%lld\n",ans);
return 0;
}
【BZOJ1040】骑士(动态规划)的更多相关文章
- bzoj1040 骑士
Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火 ...
- BZOJ1040 骑士 【环套树 树形dp】
1040: [ZJOI2008]骑士 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 5611 Solved: 2166 [Submit][Stat ...
- BZOJ1040 骑士 基环外向树
1040: [ZJOI2008]骑士 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 6421 Solved: 2544[Submit][Status ...
- BZOJ1040:骑士(基环树DP)
Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里,在和平环境中 ...
- BZOJ.4316.小C的独立集(仙人掌 DP)
题目链接 \(Description\) 求一棵仙人掌的最大独立集. \(Solution\) 如果是树,那么 \(f[i][0/1]\) 表示当前点不取/取的最大独立集大小,直接DP即可,即 \(f ...
- [BZOJ4784][ZJOI2017]仙人掌(树形DP)
4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 312 Solved: 181[Submit][Status] ...
- 基环树DP
基环树DP Page1:问题 啥是基环树?就是在一棵树上增加一条边. Page2:基环树的几种情况 无向 有向:基环外向树,基环内向树. Page3:处理问题的基本方式 1.断环成树 2.分别处理树和 ...
- BZOJ1040 [ZJOI2008]骑士 基环树林(环套树) 树形动态规划
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题意概括 有n个人,每一个人有一个最恨的人. 并且,每一个人有一个权值. 一个人不可以和他最恨的人同时被选中. 现在请你求出在 ...
- 【bzoj1040】骑士
[bzoj1040]骑士 题意 给定一个基环森林,求最大独立集. 分析 其实这是一道一年前做过的题. 只是今天在看bzoj1023的时候突然来了几许兴致,回过头来看一看. 如果对于一棵树的最大独立集, ...
随机推荐
- Spring基础篇——通过Java注解和XML配置装配bean
自动化装配的确有很大的便利性,但是却并不能适用在所有的应用场景,比如需要装配的组件类不是由自己的应用程序维护,而是引用了第三方的类库,这个时候自动装配便无法实现,Spring对此也提供了相应的解决方案 ...
- gitlab手动安装
[博客园 淡水的天空]] 老版 新版 Omnibus package installation Manually
- Python 中的闭包
通常来说,函数中的局部变量在函数调用结束的时候不能再被引用,所分配的空间也会被回收. 但是通过闭包这种技术,函数调用结束了,它的局部变量的值还可以保存在闭包里. 试举一例: def make_adde ...
- Spring_Spring与AOP_AspectJ基于注解的AOP实现
一.AspectJ.Spring与AOP的关系 AspectJ是一个面向切面的框架,它扩展了Java语言.AspectJ定义了AOP语法,所以它有一个专门的编译器用来生成遵守Java字节编码规范的Cl ...
- 批处理文件:windows下关闭指定端口
@echo offsetlocal enabledelayedexpansionset /p port=please input port number:for /f "tokens=1-5 ...
- 【前端开发】解决ios设备上fixed浮动的input输入框兼容问题
我们在开发移动端页面时,经常会存在这种需求,在页面顶部或底部有一个输入框,一直浮动在顶部或底部位置,中间部分的内容是可以滚动的.比如底部输入框的搜索功能,或底部输入框的写评论功能. 这种问题,我们一般 ...
- FFMpeg for PHP
PHP使用FFMpeg来转换视频格式.Github上搜索FFMPEG,到https://github.com/PHP-FFMpeg/PHP-FFMpeg. For Windows users : Pl ...
- 关于在windows10中的vmware9.0里面安装的ubuntukylin15.04和windows共享目录的一些反思
关于在windows10中的vmware9.0里面安装的ubuntukylin15.04和windows共享目录的一些反思 一.遇到的问题 如题目所说,在windows的虚拟机中和windo ...
- 快速入门vue-cli配置
作为一名使用了一段时间Vue.js的新手,相信和不少初入Vue的朋友一样,都对Vue-cli的配置一知半解.后来通过对webpack的学习,也算是对脚手架的配置有了一定的了解,所以也想把这段时间自己的 ...
- hdu1394 分治 or 线段树
利用分治求一次逆序数,然后每次把第一个元素放到末尾,设该交换元素的值为x,设上一次求得的逆序数为y,那么此时的逆序数等于y - x + (n - x - 1),减去x是因为x作为第一个元素,其后共有x ...