POJ 1797 Heavy Transportation (最大生成树)
题目链接:POJ 1797
Description
Background
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight.
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.
Problem
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.
Input
The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.
Output
The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.
Sample Input
1
3 3
1 2 3
1 3 4
2 3 5
Sample Output
Scenario #1:
4
Source
TUD Programming Contest 2004, Darmstadt, Germany
Solution
题意
有 N 个城市,M 条道路,Hugo Heavy 要从城市 1 到城市 N 运输货物,每条道路都有它的最大载重量,求从城市 1 到城市 N 运送最多的重量是多少。
思路
最大生成树
题目要求点 1 到 N 的所有路径的所有边权的最小值中的最大值。维护一个最大生成树,不断将最大权值的边加入,如果遇到点 N 就结束。
这题有点坑,输出两个换行。
此题还可以用 \(Dijkstra\) 解决。戳这里
Code
Prim
#include <iostream>
#include <cstdio>
#include <queue>
#include <map>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1010;
const int inf = 0x3f3f3f3f;
typedef pair<int, int> P;
int n, m;
int ans;
struct Edge {
int to, w;
Edge(int to, int w): to(to), w(w) {}
};
vector<Edge> G[N];
int d[N], v[N];
void init() {
for(int i = 0; i < N; ++i) {
G[i].clear();
}
ans = inf;
}
void add(int x, int y, int z) {
G[x].push_back(Edge(y, z));
}
void prim(int s) {
priority_queue<P> q;
memset(d, 0, sizeof(d));
memset(v, 0, sizeof(v));
d[s] = inf;
q.push(P(inf, s));
while(q.size()) {
P p = q.top(); q.pop();
int x = p.second;
if(v[x]) continue;
v[x] = 1;
ans = min(ans, p.first);
if(x == n) return;
for(int i = 0; i < G[x].size(); ++i) {
Edge e = G[x][i];
if (d[e.to] < e.w && !v[e.to]) {
d[e.to] = e.w;
q.push(P(d[e.to], e.to));
}
}
}
}
int main() {
int T;
scanf("%d", &T);
int kase = 0;
while(T--) {
init();
scanf("%d%d", &n, &m);
for(int i = 0; i < m; ++i) {
int x, y, z;
scanf("%d%d%d", &x, & y, &z);
add(x, y, z);
add(y, x, z);
}
prim(1);
if(kase) printf("\n");
printf("Scenario #%d:\n", ++kase);
printf("%d\n", ans);
}
return 0;
}
Kruskal
#include <iostream>
#include <cstdio>
#include <queue>
#include <map>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1010, M = 1e6 + 10;
const int inf = 0x3f3f3f3f;
int n, m;
int ans;
struct Edge {
int x, y, z;
} edge[M];
int fa[N];
int cmp(Edge a, Edge b) {
return a.z > b.z;
}
int get(int x) {
if(x == fa[x]) return x;
return fa[x] = get(fa[x]);
}
void init() {
for(int i = 0; i <= n; ++i) {
fa[i] = i;
}
ans = inf;
}
void kruskal() {
sort(edge + 1, edge + 1 + m, cmp);
for(int i = 1; i <= m; ++i) {
int x = get(edge[i].x);
int y = get(edge[i].y);
if(x != y) {
ans = min(ans, edge[i].z);
fa[x] = y;
}
x = get(1);
y = get(n);
if(x == y) return;
}
}
int main() {
int T;
scanf("%d", &T);
int kase = 0;
while(T--) {
scanf("%d%d", &n, &m);
init();
for(int i = 1; i <= m; ++i) {
scanf("%d%d%d", &edge[i].x, &edge[i].y, &edge[i].z);
}
kruskal();
if(kase) printf("\n");
printf("Scenario #%d:\n", ++kase);
printf("%d\n", ans);
}
return 0;
}
POJ 1797 Heavy Transportation (最大生成树)的更多相关文章
- poj 1797 Heavy Transportation(最大生成树)
poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...
- POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径)
POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径) Description Background Hugo ...
- POJ.1797 Heavy Transportation (Dijkstra变形)
POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...
- POJ 1797 Heavy Transportation
题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K T ...
- POJ 1797 Heavy Transportation SPFA变形
原题链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K T ...
- POJ 1797 Heavy Transportation(最大生成树/最短路变形)
传送门 Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 31882 Accept ...
- POJ 1797 Heavy Transportation (Dijkstra变形)
F - Heavy Transportation Time Limit:3000MS Memory Limit:30000KB 64bit IO Format:%I64d & ...
- POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】
Heavy Transportation Time Limit:3000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64 ...
- POJ 1797 Heavy Transportation (Dijkstra)
题目链接:POJ 1797 Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter pro ...
随机推荐
- android SlidingDrawer
SlidingDrawer把内容从屏幕上隐藏,允许用户拖动把手将内容显示到屏幕.SlidingDrawer可用于垂直或水平.它由两个视图组成的:handle,让用户拖拉的;content,连在hand ...
- 8条关于Web前端性能的优化建议
一般网站优化都是优化后台,如接口的响应时间.SQL优化.后台代码性能优化.服务器优化等.高并发情况下,对前端web优化也是非常重要的. 下面说说几种常见的优化措施. 1.HTML CSS JS位置 一 ...
- webstorm的下载、破解、与汉化
其实很简单的事情,都被我弄复杂了倒腾了很久,特做个记录. 说明前提,版本为 webstorm 2018.1.4 一.下载webstorom 下载地址:当然去官网啊 https://www.jetbr ...
- 自编shell脚本合集(完善中)
1.数据库备份 #!/bin/bash user="root" psword="root" bakdir="/data/mysqlbak" ...
- 【问题解决方案】本地仓库删除远程库后添加到已有github仓库时仓库地址找不到的问题(github仓库SSH地址)
参考: 我参考我自己.jpg 背景: 想添加一下远程库,github主页找了半天,Google搜索了半天,都没有找到,所以这里写一个,记录一下 1-格式分析:git@github.com:用户名/仓库 ...
- Django版本更新(升级)到指定版本的命令
- 用python编写排序算法
交换排序 === 冒泡排序,快速排序 插入排序 ===直接插入排序,希尔排序 选择排序 === 简单选择排序,堆排序 归并排序 基数排序 冒泡排序 要点 冒泡排序是一种交换排序. 什么是交换排序呢? ...
- solrconfig.xml主要配置项
solrconfig.xml中的配置项主要分以下几大块: 1.依赖的lucene版本配置,这决定了你创建的Lucene索引结构,因为Lucene各版本之间的索引结构并不是完全兼容的,这个需要引起你的注 ...
- Python3.5-20190507-廖老师-自我笔记-迭代
可以使用for x in 数据 的那么 这个数据就是可迭代对象. 通过计算生成下一个值的数据就是生成器 可以使用next(数据) 来计算出下一个值的数据就是迭代器(生成器属于迭代器) -------- ...
- js判断元素是否可见
dom元素是否可见可使用jq的is方法和dom的offsetParent === null方法 jq中 $(element).is(":visible") === true !!( ...