Rosenblatt于1958年发布的感知器算法,算是机器学习鼻祖级别的算法。其算法着眼于最简单的情况,即使用单个神经元、单层网络进行监督学习(目标结果已知),并且输入数据线性可分。我们可以用该算法来解决and 和 or的问题。

在讨论神经元的数学模型时,我们将单个神经元抽象为下图的信号流图形式。输入向量为x,权重向量为w,w0一路为bias,这里不再赘述。

 
 
而本文算讲的算法,其解决的实际问题是,在知道输入向量x,和输出向量y的情况下,求解感知器的权重向量w以及bias。在几何上,我们可以理解为,我们有确定的n个点(x,y坐标确定),根据不断调整w的值,来求取一个超平面(Hyperplane)或称决策边界(Decision
Boundary),将这n个点分隔成2组。

因为在输入向量与权重向量内积运算后,induced local field的值为:

 
而在其进入activation
function
时,很明显0是一个很重要的阈值,也即是输出值的分界点。
 
所以,我们要解决的问题也就可以等同于求出如下等式的一个解:
如果将bias单独拿出,则改写为:
 
之前一直不理解bias存在于神经网络中的意义,直到在《Neural networks and deep learning》被醍醐灌顶。其实bias类似于阈值门槛的大小,阈值就是-w0*bias。而在Western读书的同学,也有能够一击领悟到其意义的,让我也是有些艳羡。

Perceptron Algorithm 感知器算法及其实现的更多相关文章

  1. 感知器算法--python实现

    写在前面: 参考: 1  <统计学习方法>第二章感知机[感知机的概念.误分类的判断]   http://pan.baidu.com/s/1hrTscza 2   点到面的距离 3   梯度 ...

  2. 机器学习之感知器算法原理和Python实现

    (1)感知器模型 感知器模型包含多个输入节点:X0-Xn,权重矩阵W0-Wn(其中X0和W0代表的偏置因子,一般X0=1,图中X0处应该是Xn)一个输出节点O,激活函数是sign函数. (2)感知器学 ...

  3. Stanford大学机器学习公开课(三):局部加权回归、最小二乘的概率解释、逻辑回归、感知器算法

    (一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为 ...

  4. 第三集 欠拟合与过拟合的概念、局部加权回归、logistic回归、感知器算法

    课程大纲 欠拟合的概念(非正式):数据中某些非常明显的模式没有成功的被拟合出来.如图所示,更适合这组数据的应该是而不是一条直线. 过拟合的概念(非正式):算法拟合出的结果仅仅反映了所给的特定数据的特质 ...

  5. [置顶] 局部加权回归、最小二乘的概率解释、逻辑斯蒂回归、感知器算法——斯坦福ML公开课笔记3

    转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9113681 最近在看Ng的机器学习公开课,Ng的讲法循循善诱,感觉提高了不少 ...

  6. 感知器算法PLA

    for batch&supervised binary classfication,g≈f <=> Eout(g)≥0 achieved through Eout(g)≈Ein(g ...

  7. 【2008nmj】Logistic回归二元分类感知器算法.docx

    给你一堆样本数据(xi,yi),并标上标签[0,1],让你建立模型(分类感知器二元),对于新给的测试数据进行分类. 要将两种数据分开,这是一个分类问题,建立数学模型,(x,y,z),z指示[0,1], ...

  8. 感知器算法 C++

    We can estimate the weight values for our training data using stochastic gradient descent. Stochasti ...

  9. 机器学习 —— 基础整理(六)线性判别函数:感知器、松弛算法、Ho-Kashyap算法

    这篇总结继续复习分类问题.本文简单整理了以下内容: (一)线性判别函数与广义线性判别函数 (二)感知器 (三)松弛算法 (四)Ho-Kashyap算法 闲话:本篇是本系列[机器学习基础整理]在time ...

随机推荐

  1. Prim算法生成迷宫

    初始化地图 function initMaze(r,c){ let row = new Array(2 * r + 1) for(let i = 0; i < row.length; i++){ ...

  2. (转)微信调用扫码和支付功能是都报错 the permission value is offline verifying

    原文地址:https://blog.csdn.net/qq_34794885/article/details/98504970

  3. Excel中数字和字母混合时提取某些字符进行排序

    在excel中,当数字和字母混合在一起的时候,会出现排序错误的情况 比如下图的这种情况.我们希望的是2排在1后面,但是实际上10却排在了1的后面.这时候我们就需要把字符串中的数字提取出来进行排序 第一 ...

  4. C语言|博客作业4

    一.本周教学内容:用C语言编写程序-循环结构 2.4 输出华氏-摄氏温度转换表.要求学生掌握使用for循环语句实现指定次数的循环程序设计. 二.本周作业头 问题 答案 这个作业属于哪个内容 C语言程序 ...

  5. AttributeError: module 'requests' has no attribute 'get'的错误疑惑

    我发现文件直接用requests.get(url)会提示我AttributeError: module 'requests' has no attribute 'get' 我把问题百度了一下,解决方法 ...

  6. vue项目中路由验证和相应拦截的使用

    详解Vue路由钩子及应用场景(小结):https://www.jb51.net/article/127678.htm vue项目中路由验证和相应拦截的使用:https://blog.csdn.net/ ...

  7. CSS div内放长英文字母或长数字自动换行 CSS一行排不下自动打断换行

    添加css  word-wrap:break-word 解释:使用break-word时,是将强制换行. 兼容各版本IE浏览器,兼容谷歌浏览器.

  8. 【转】Pandas速查手册中文版

    本文翻译自文章:Pandas Cheat Sheet - Python for Data Science,同时添加了部分注解. 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重 ...

  9. Git忽略已经跟踪的文件 转摘:http://blog.csdn.net/huguohuan/article/details/7380349

    某工程project用Git管理代码,但是在他的根目录下有个配置文件,比如project.iws是不需要git每次跟踪它的修改记录的. 一般做法是在.gitignore文件中添加一行 project. ...

  10. 【记录】ELK之logstash同步mysql数据到Elasticsearch ,配置文件详解

    本文出处:https://my.oschina.net/xiaowangqiongyou/blog/1812708#comments 截取部分内容以便学习 input { jdbc { # mysql ...