题目:Fibonacci Check-up

链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855

分析:

1)二项式展开:$(x+1)^n = \sum^n_{k=0}{C^k_n * x^k}$

2)Fibonacci数列可以写为:$ \left[ \begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right]^n$的左下角项。

3)构造矩阵$ T = Fib+E = \left[ \begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right] + \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] = \left[ \begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array} \right]$。

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long LL;
int MOD;
struct Matrix{
LL a[][];
void init(int f){
memset(a,,sizeof a);
if(f==-)return;
for(int i=;i<;++i)a[i][i]=;
}
};
Matrix operator*(Matrix& A,Matrix& B){
Matrix C;C.init(-);
for(int i=;i<;++i)
for(int j=;j<;++j)
for(int k=;k<;++k){
C.a[i][j]+=A.a[i][k]*B.a[k][j];
C.a[i][j]%=MOD;
}
return C;
}
Matrix operator^(Matrix A,int n){
Matrix Rt;Rt.init();
for(;n;n>>=){
if(n&)Rt=Rt*A;
A=A*A;
}
return Rt;
}
int main(){
int n,Case;scanf("%d",&Case);
Matrix A,T;
T.a[][]=;T.a[][]=;
T.a[][]=;T.a[][]=; for(;Case--;){
scanf("%d%d",&n,&MOD);
A=T^n;
LL ans=A.a[][];
printf("%lld\n",ans%MOD);
} return ;
}

4)$\sum^n_{k=0}{C^k_n * f(k)} = f(2*n) $

5)证明:$ \sum^n_{k=0}{C^k_n * f(k)} $

= $ \sum^n_{k=0}{ C^k_n * { [ { ( \frac{1+\sqrt{5}}{2} )}^k - { ( \frac{1-\sqrt{5}}{2} )}^k }] } $

= $ \sum^n_{k=0}{ C^k_n * {( \frac{1+\sqrt{5}}{2} )}^k } - \sum^n_{k=0}{ C^k_n * { ( \frac{1-\sqrt{5}}{2} )}^k } $

= $ { ( \frac{1+\sqrt{5}}{2} + 1 ) }^k $ - $ { ( \frac{1-\sqrt{5}}{2} + 1 ) }^k $

= $ { ( \frac{3+\sqrt{5}}{2} ) }^k $ - $ { ( \frac{3-\sqrt{5}}{2} ) }^k $

= $ { ( \frac{6+2*\sqrt{5}}{4} ) }^k $ - $ { ( \frac{6-2*\sqrt{5}}{4} ) }^k $

= $ { ( \frac{1+\sqrt{5}}{2} ) }^{2k} $ - $ { ( \frac{1-\sqrt{5}}{2} ) }^{2k} $

= $ f(2*k) $

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long LL;
int MOD;
struct Matrix{
LL a[][];
void init(int f){
memset(a,,sizeof a);
if(f==-)return;
for(int i=;i<;++i)a[i][i]=;
}
};
Matrix operator*(Matrix& A,Matrix& B){
Matrix C;C.init(-);
for(int i=;i<;++i)
for(int j=;j<;++j)
for(int k=;k<;++k){
C.a[i][j]+=A.a[i][k]*B.a[k][j];
C.a[i][j]%=MOD;
}
return C;
}
Matrix operator^(Matrix A,int n){
Matrix Rt;Rt.init();
for(;n;n>>=){
if(n&)Rt=Rt*A;
A=A*A;
}
return Rt;
}
int main(){
int n,Case;scanf("%d",&Case);
Matrix A,T;
T.a[][]=;T.a[][]=;
T.a[][]=;T.a[][]=;
for(;Case--;){
scanf("%d%d",&n,&MOD);
A=T^(n+n);
LL ans=A.a[][];
printf("%lld\n",ans%MOD);
} return ;
}

[HDU2855]Fibonacci Check-up的更多相关文章

  1. HDU2855—Fibonacci Check-up

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855 题目意思:求一个式子g[n]=∑C(n,k)*f[k],n很大,很明显是一个矩阵快速幂.可以打表 ...

  2. 可变长度的Fibonacci数列

    原题目: Write a recursive program that extends the range of the Fibonacci sequence.  The Fibonacci sequ ...

  3. Applying Eigenvalues to the Fibonacci Problem

    http://scottsievert.github.io/blog/2015/01/31/the-mysterious-eigenvalue/ The Fibonacci problem is a ...

  4. hdu 5167 Fibonacci 打表

    Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Proble ...

  5. 【Fibonacci】BestCoder #28B Fibonacci

    Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  6. hdu 5167 Fibonacci(预处理)

    Problem Description Following is the recursive definition of Fibonacci sequence: Fi=⎧⎩⎨01Fi−1+Fi−2i ...

  7. [Algorithm] Fibonacci Sequence - Anatomy of recursion and space complexity analysis

    For Fibonacci Sequence, the space complexity should be the O(logN), which is the height of tree. Che ...

  8. fibonacci数列的性质和实现方法

    fibonacci数列的性质和实现方法 1.gcd(fib(n),fib(m))=fib(gcd(n,m)) 证明:可以通过反证法先证fibonacci数列的任意相邻两项一定互素,然后可证n>m ...

  9. LeetCode 842. Split Array into Fibonacci Sequence

    原题链接在这里:https://leetcode.com/problems/split-array-into-fibonacci-sequence/ 题目: Given a string S of d ...

随机推荐

  1. 【ABAP系列】SAP ABAP 物料凭证增强

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP 物料凭证增强 ...

  2. 【OpenGL】---认识CubeTexture

    一.OpenGL Cube Texture 立方体纹理 立方体纹理是一种特殊的纹理技术,他用6幅二维贴图构成一个以原点为中心的纹理立方体.对于每个片段,纹理坐标(s,t,r)被当做三维向量看待,每个纹 ...

  3. C语言readdir()函数:读取目录函数

    相关函数:open, opendir, closedir, rewinddir, seekdir, telldir, scandir 头文件:#include <sys/types.h> ...

  4. poj2376Cleaning Shifts (贪心求解)

    描述 大表哥分配 N (1 <= N <= 25,000) 只中的一些奶牛在牛棚附近做些清洁. 他总是要让至少一只牛做清洁.他把一天分成T段(1 <= T <= 1,000,0 ...

  5. 2019/10/13 TZOJ

    水题虽不好,但是很爽 渴望未来某天能把剩下的题补了,先做个记录. Hard Disk Drive http://acm.hdu.edu.cn/showproblem.php?pid=4788 单位转化 ...

  6. 什么是php扩展

    PHP扩展英文为PHP Extension and Application Repository,简称pear(下面都以pear简称),中文全称为PHP扩展与应用库.是为了创建一个类似于Perl CP ...

  7. POJ-1287.Network(Kruskal + Prim + Prim堆优化)

    Networking Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19674   Accepted: 10061 Desc ...

  8. java_第一年_JavaWeb(9)

    JavaBean是一个遵循某种特定写法的Java类,有以下特点: 必需具有一个无参的构造函数 属性必需私有化 私有化的属性必需通过public类型的方法暴露给其它程序,其方法命名也有一定的规范 范例: ...

  9. php数组转换字符串及复选框如何勾选中

    php数组转换字符串及复选框如何勾选中,应用到函数 implode  explode 复选框被选中后如何保存数据,表单提交过来为数组,要转换字符串 用到函数implode if(!empty($_PO ...

  10. THUPC/CTS/APIO2019划水记

    THUPC:划水的咸鱼 CTS:打铁 APIO:压线cu 终于又回归了文化课. 落下10天的课程,OI又得停一停了 这次划水,又见识了许多的神仙,再一次被吊打 5.11~5.20,有太多的事情需要回忆 ...