转自http://blog.csdn.net/dongtingzhizi/article/details/15962797

当我第一遍看完台大的机器学习的视频的时候,我以为我理解了逻辑回归,可后来越看越迷糊,直到看到了这篇文章,豁然开朗

基本原理

Logistic Regression和Linear Regression的原理是相似的,按照我自己的理解,可以简单的描述为这样的过程:

(1)找一个合适的预测函数(Andrew Ng的公开课中称为hypothesis),一般表示为h函数,该函数就是我们需要找的分类函数,它用来预测输入数据的判断结果。这个过程时非常关键的,需要对数据有一定的了解或分析,知道或者猜测预测函数的“大概”形式,比如是线性函数还是非线性函数。

(2)构造一个Cost函数(损失函数),该函数表示预测的输出(h)与训练数据类别(y)之间的偏差,可以是二者之间的差(h-y)或者是其他的形式。综合考虑所有训练数据的“损失”,将Cost求和或者求平均,记为J(θ)函数,表示所有训练数据预测值与实际类别的偏差。

(3)显然,J(θ)函数的值越小表示预测函数越准确(即h函数越准确),所以这一步需要做的是找到J(θ)函数的最小值。找函数的最小值有不同的方法,Logistic Regression实现时有的是梯度下降法(Gradient Descent)。

具体过程

(1)  构造预测函数

Logistic Regression虽然名字里带“回归”,但是它实际上是一种分类方法,用于两分类问题(即输出只有两种)。根据第二章中的步骤,需要先找到一个预测函数(h),显然,该函数的输出必须是两个值(分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:

对应的函数图像是一个取值在0和1之间的S型曲线(图1)。

图1

接下来需要确定数据划分的边界类型,对于图2和图3中的两种数据分布,显然图2需要一个线性的边界,而图3需要一个非线性的边界。接下来我们只讨论线性边界的情况。

图2

图3

对于线性边界的情况,边界形式如下:

构造预测函数为:

hθ(x)函数的值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:

(2)构造Cost函数

Andrew Ng在课程中直接给出了Cost函数及J(θ)函数如式(5)和(6),但是并没有给出具体的解释,只是说明了这个函数来衡量h函数预测的好坏是合理的。

实际上这里的Cost函数和J(θ)函数是基于最大似然估计推导得到的。下面详细说明推导的过程。(4)式综合起来可以写成:

取似然函数为:

对数似然函数为:

最大似然估计就是要求得使l(θ)取最大值时的θ,其实这里可以使用梯度上升法求解,求得的θ就是要求的最佳参数。但是,在Andrew Ng的课程中将J(θ)取为(6)式,即:

因为乘了一个负的系数-1/m,所以J(θ)取最小值时的θ为要求的最佳参数。

(3)梯度下降法求J(θ)的最小值

J(θ)的最小值可以使用梯度下降法,根据梯度下降法可得θ的更新过程:

式中为α学习步长,下面来求偏导:

上式求解过程中用到如下的公式:

因此,(11)式的更新过程可以写成:

因为式中α本来为一常量,所以1/m一般将省略,所以最终的θ更新过程为:

之后,参数更新为:

终止条件:

目前指定迭代次数。后续会谈到更多判断收敛和确定迭代终点的方法。


另外,补充一下,3.2节中提到求得l(θ)取最大值时的θ也是一样的,用梯度上升法求(9)式的最大值,可得:

观察上式发现跟(14)是一样的,所以,采用梯度上升发和梯度下降法是完全一样的,这也是《机器学习实战》中采用梯度上升法的原因。

Logic回归总结的更多相关文章

  1. 逻辑回归(logic regression)的分类梯度下降

    首先明白一个概念,什么是逻辑回归:所谓回归就是拟合,说明x是连续的:逻辑呢?就是True和False,也就是二分类:逻辑回归即使就是指对于二分类数据的拟合(划分). 那么什么是模型呢?模型其实就是函数 ...

  2. MlLib--逻辑回归笔记

    批量梯度下降的逻辑回归可以参考这篇文章:http://blog.csdn.net/pakko/article/details/37878837 看了一些Scala语法后,打算看看MlLib的机器学习算 ...

  3. Apache Spark源码走读之22 -- 浅谈mllib中线性回归的算法实现

    欢迎转载,转载请注明出处,徽沪一郎. 概要 本文简要描述线性回归算法在Spark MLLib中的具体实现,涉及线性回归算法本身及线性回归并行处理的理论基础,然后对代码实现部分进行走读. 线性回归模型 ...

  4. AI - TensorFlow - 分类与回归(Classification vs Regression)

    分类与回归 分类(Classification)与回归(Regression)的区别在于输出变量的类型.通俗理解,定量输出称为回归,或者说是连续变量预测:定性输出称为分类,或者说是离散变量预测. 回归 ...

  5. 机器学习-逻辑回归与SVM的联系与区别

    (搬运工) 逻辑回归(LR)与SVM的联系与区别 LR 和 SVM 都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题,如LR的Softmax回归用在深度学习的多分类 ...

  6. 神经网络、logistic回归等分类算法简单实现

    最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里 ...

  7. SVM分类与回归

    SVM(支撑向量机模型)是二(多)分类问题中经常使用的方法,思想比较简单,但是具体实现与求解细节对工程人员来说比较复杂,如需了解SVM的入门知识和中级进阶可点此下载.本文从应用的角度出发,使用Libs ...

  8. 原创:去繁存简,回归本源:微信小程序公开课信息分析《一》

    以前我开过一些帖子,我们内部也做过一些讨论,我们从张小龙的碎屏图中 ,发现了重要讯息: 1:微信支付将成为重要场景: 2:这些应用与春节关系不小,很多应用在春节时,有重要的场景开启可能性: 3:春节是 ...

  9. [占位-未完成]scikit-learn一般实例之十:核岭回归和SVR的比较

    [占位-未完成]scikit-learn一般实例之十:核岭回归和SVR的比较

随机推荐

  1. 在webpack4 中利用Babel 7取消严格模式方法

    报错信息: Uncaught TypeError: 'caller', 'callee', and 'arguments' properties may not be accessed on stri ...

  2. Linux NIO 系列(02) 阻塞式 IO

    目录 一.环境准备 1.1 代码演示 二.Socket 是什么 2.1 socket 套接字 2.2 套接字描述符 2.3 文件描述符和文件指针的区别 三.基本的 SOCKET 接口函数 3.1 so ...

  3. python面试题之阅读下面的代码,它的输出结果是什么?

    class A(object): def go(self): print "go A go!" def stop(self): print "stop A stop!&q ...

  4. MySQL练习题--sqlzoo刷题2

    SELECT from Nobel Tutorial 1.Change the query shown so that it displays Nobel prizes for 1950. SELEC ...

  5. 华南理工大学“三七互娱杯”程序设计竞赛 G: HRY and tree

    题意:给出一棵树,定义两点间代价为两点路径上最长的边权,问任两点间的代价和. 解法:这道题的解法十分巧妙:直接用Kruskal对这棵树求最小生成树,然后对于即将加入到MST的这条边(u,v,w),这条 ...

  6. {"timestamp":"2019-11-12T02:39:28.949+0000","status":415,"error":"Unsupported Media Type","message":"Content type 'text/plain;charset=UTF-8' not supported","path":&quo

    在Jmeter运行http请求时报错: {"timestamp":"2019-11-12T02:39:28.949+0000","status&quo ...

  7. laravel ajax提交报错Symfony\Component\HttpKernel\Exception\HttpException

    出现此种错误,通常是没有提交安全验证 params = { id: 2, _token: '{{ csrf_token() }}' } function cancel() { var url = &q ...

  8. 【NOI2011】兔农(循环节)

    我居然没看题解瞎搞出来了? 题解: 不难想到找到每次减1的位置,然后减去它对最终答案的贡献. 假设有一个地方是\(x,1(mod~k)\) 那么减了1后就变成了\(x,0\). 然后可以推到\(x,0 ...

  9. 【LeetCode 15】三数之和

    题目链接 [题解] 先把n个数字升序排个序. 然后枚举三元组最左边的那个数字是第i个数字. 之后用两个指针l,r移动来获取三元组的第2个和第3个数字. (初始值,l=i+1,r = n-1); 如果a ...

  10. delphi 多线程编程

    开始本应该是一篇洋洋洒洒的文字, 不过我还是提倡先做起来, 在尝试中去理解.先试试这个: procedure TForm1.Button1Click(Sender: TObject); var i: ...