Codeforces - 1096G - Lucky Tickets - NTT
https://codeforc.es/contest/1096/problem/G
把数组分成前后两半,那么前半部分的各个值的表示方案的平方的和就是答案。
这些数组好像可以dp出来。
一开始设dp[i]数组表示1<<i位的各个值,那么做16次NTT然后把n分解下去就求出来答案了。总共要30多次convolution,比较大的NTT少说有6次。
后来发现dp数组可以只记录一次,用完就可以接着用。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 5e6, mod = 998244353;
inline int pow_mod(ll x, int n) {
ll res;
for(res = 1; n; n >>= 1, x = x * x % mod)
if(n & 1)
res = res * x % mod;
return res;
}
inline int add_mod(int x, int y) {
x += y;
return x >= mod ? x - mod : x;
}
inline int sub_mod(int x, int y) {
x -= y;
return x < 0 ? x + mod : x;
}
void NTT(int a[], int n, int op) {
for(int i = 1, j = n >> 1; i < n - 1; ++i) {
if(i < j)
swap(a[i], a[j]);
int k = n >> 1;
while(k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
for(int len = 2; len <= n; len <<= 1) {
int g = pow_mod(3, (mod - 1) / len);
for(int i = 0; i < n; i += len) {
int w = 1;
for(int j = i; j < i + (len >> 1); ++j) {
int u = a[j], t = 1ll * a[j + (len >> 1)] * w % mod;
a[j] = add_mod(u, t), a[j + (len >> 1)] = sub_mod(u, t);
w = 1ll * w * g % mod;
}
}
}
if(op == -1) {
reverse(a + 1, a + n);
int inv = pow_mod(n, mod - 2);
for(int i = 0; i < n; ++i)
a[i] = 1ll * a[i] * inv % mod;
}
}
int A[MAXN + 5], B[MAXN + 5];
int pow2(int x) {
int res = 1;
while(res < x)
res <<= 1;
return res;
}
void convolution(int a[], int b[], int asize, int bsize, int c[], int &csize) {
int n = pow2(asize + bsize - 1);
for(int i = 0; i < n; ++i) {
A[i] = i < asize ? a[i] : 0;
B[i] = i < bsize ? b[i] : 0;
}
NTT(A, n, 1);
NTT(B, n, 1);
for(int i = 0; i < n; ++i)
A[i] = 1ll * A[i] * B[i] % mod;
NTT(A, n, -1);
csize = n;
for(int i = 0; i < n; ++i)
c[i] = A[i];
return;
}
int dp[MAXN], dpsize; //dp[i]:1<<i位能表示的各个位数
int ans[MAXN], anssize;
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
cout<<(1<<20)<<endl;
int n, k;
scanf("%d%d", &n, &k);
for(int i = 0; i < k; ++i) {
int tmp;
scanf("%d", &tmp);
dp[tmp] = 1;
}
dpsize = 10;
int n2 = n >> 1;
bool fi = true;
while(n2) {
if(n2 & 1) {
if(!fi)
convolution(ans, dp, anssize, dpsize, ans, anssize);
else {
fi = false;
for(int j = 0; j < dpsize; j++)
ans[j] = dp[j];
anssize = dpsize;
}
}
n2 >>= 1;
if(n2)
convolution(dp, dp, dpsize, dpsize, dp, dpsize);
}
ll res = 0;
for(int i = 0; i < anssize; i++) {
res += 1ll * ans[i] * ans[i] % mod;
}
printf("%lld\n", res % mod);
return 0;
}
但其实不需要用到convolution???
注意到convolution的本质其实是用NTT变成点值,然后用点值加法再用NTT变回来。
其实注意到
void convolution(int a[], int b[], int asize, int bsize, int c[], int &csize) {
int n = pow2(asize + bsize - 1);
for(int i = 0; i < n; ++i) {
A[i] = i < asize ? a[i] : 0;
B[i] = i < bsize ? b[i] : 0;
}
NTT(A, n, 1);
NTT(B, n, 1);
for(int i = 0; i < n; ++i)
A[i] = 1ll * A[i] * B[i] % mod;
NTT(A, n, -1);
csize = n;
for(int i = 0; i < n; ++i)
c[i] = A[i];
return;
}
里面,两个多项式卷积实际上只是对应位置做乘法。
那么只要把对应位置的乘法一次全部做完就可以了。
从另一个角度想,要是把这个数组本身视作一个多项式(生成函数),\(a_ix^i\)中,\(a_i\)就是和为\(i\)的方案数。那么
\(F(x)=\sum\limits_{i=0}^{9}a_ix^i\) 就是1位数的选法,选n次那就是\(F^n(x)\)
这个就直接点值化之后对点值直接快速幂然后再插值 。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 1<<21, mod = 998244353;
inline int pow_mod(ll x, int n) {
ll res;
for(res = 1; n; n >>= 1, x = x * x % mod)
if(n & 1)
res = res * x % mod;
return res;
}
inline int add_mod(int x, int y) {
x += y;
return x >= mod ? x - mod : x;
}
inline int sub_mod(int x, int y) {
x -= y;
return x < 0 ? x + mod : x;
}
void NTT(int a[], int n, int op) {
for(int i = 1, j = n >> 1; i < n - 1; ++i) {
if(i < j)
swap(a[i], a[j]);
int k = n >> 1;
while(k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
for(int len = 2; len <= n; len <<= 1) {
int g = pow_mod(3, (mod - 1) / len);
for(int i = 0; i < n; i += len) {
int w = 1;
for(int j = i; j < i + (len >> 1); ++j) {
int u = a[j], t = 1ll * a[j + (len >> 1)] * w % mod;
a[j] = add_mod(u, t), a[j + (len >> 1)] = sub_mod(u, t);
w = 1ll * w * g % mod;
}
}
}
if(op == -1) {
reverse(a + 1, a + n);
int inv = pow_mod(n, mod - 2);
for(int i = 0; i < n; ++i)
a[i] = 1ll * a[i] * inv % mod;
}
}
int pow2(int x) {
int res = 1;
while(res < x)
res <<= 1;
return res;
}
int A[MAXN + 5];
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int n, k;
scanf("%d%d", &n, &k);
for(int i = 0; i < k; ++i) {
int tmp;
scanf("%d", &tmp);
A[tmp] = 1;
}
n>>=1;
int maxn=pow2(n*9);
NTT(A,maxn,1);
for(int i = 0; i < maxn; i++)
A[i]=pow_mod(A[i],n);
NTT(A,maxn,-1);
ll res=0;
for(int i = 0; i < maxn; i++)
res += 1ll * A[i] * A[i] % mod;
printf("%lld\n", res % mod);
return 0;
}
Codeforces - 1096G - Lucky Tickets - NTT的更多相关文章
- 2019.01.26 codeforces 1096G. Lucky Tickets(生成函数)
传送门 题意简述:现在有一些号码由000~999中的某些数字组成(会给出),号码总长度为nnn,问有多少个号码满足前n2\frac n22n个数码的和等于后n2\frac n22n个数码的和(保证 ...
- @codeforces - 1096G@ Lucky Tickets
目录 @description@ @solution@ @accepted code@ @details@ @description@ 已知一个数(允许前导零)有 n 位(n 为偶数),并知道组成这个 ...
- Codeforces 1096G. Lucky Tickets【生成函数】
LINK 题目大意 很简单自己看 思路 考虑生成函数(为啥tags里面有一个dp啊) 显然,每一个指数上是否有系数是由数集中是否有这个数决定的 有的话就是1没有就是0 然后求出这个生成函数的\(\fr ...
- Codeforces1096G Lucky Tickets(NTT优化dp)
设\(f[i][j]\)表示填了\(i\)个数,数位和为\(j\)的方案数 于是方程为: \[f[i][j]=\sum_{k=0}^9 f[i-1][j-k]*[CanUse[k]==1]\] 其中\ ...
- CF1096. G. Lucky Tickets(快速幂NTT)
All bus tickets in Berland have their numbers. A number consists of n digits (n is even). Only k dec ...
- Codeforces Gym 100418J Lucky tickets 数位DP
Lucky ticketsTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/view ...
- POJ-2346 Lucky tickets(线性DP)
Lucky tickets Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3298 Accepted: 2174 Descrip ...
- DP+高精度 URAL 1036 Lucky Tickets
题目传送门 /* 题意:转换就是求n位数字,总和为s/2的方案数 DP+高精度:状态转移方程:dp[cur^1][k+j] = dp[cur^1][k+j] + dp[cur][k]; 高精度直接拿J ...
- Ural 1036 Lucky Tickets
Lucky Tickets Time Limit: 2000ms Memory Limit: 16384KB This problem will be judged on Ural. Original ...
随机推荐
- msyql 优化之五不要
1.尽量不要有空判断的语句,因为空判断将导致全表扫描,而不是索引扫描. 对于空判断这种情况,可以考虑对这个列创建数据库默认值 //空判断将导致全表扫描 select small_id from sma ...
- MongoDB操作:flush()
flush() 是把缓冲区的数据强行输出,(注意不要和frush()刷新混淆了). 主要用在IO中,即清空缓冲区数据,一般在读写流(stream)的时候,数据是先被读到了内存中,再把数据写到文件中,当 ...
- Luogu P2309 loidc,卖卖萌
题目链接:Click here 题目大意:给你一个长度为n的数串,问这个数串的sum为正数的子串个数 Solution: 我们先处理以下前缀和,记为\(s_i\) 则问题可以转化为求有多少对\(i,j ...
- sh_10_体验模块
sh_10_体验模块 import sh_10_分隔线模块 sh_10_分隔线模块.print_line("-", 50) print(sh_10_分隔线模块.name)
- 【Leetcode】对称二叉树
递归法 执行用时 :12 ms, 在所有 C++ 提交中击败了43.44%的用户 内存消耗 :14.6 MB, 在所有 C++ 提交中击败了95.56%的用户 /** * Definition for ...
- JMS学习三(ActiveMQ消息的可靠性)
下面我们来学习一下消息接受确认和发送持久化消息.消息的过期.消息的选择器和消息的优先级. 一.消息接收确认 1.jms消息只有在被确认之后才认为成功消费了这条消息.消息的成功消费通常包括三个步骤:(1 ...
- Spring Data Jpa (二)JPA基础查询
介绍Spring Data Common里面的公用基本方法 (1)Spring Data Common的Repository Repository位于Spring Data Common的lib里面, ...
- mssql的sql注入拿后台
0x01判断数据 ①判断数据库类型 and exists (select * from sysobjects)--返回正常为mssql(也名sql server) and exists (select ...
- webpack.config.js文件
与 package.json 配合使用 var path=require("path");var OpenBrowserPlugin = require('open-browser ...
- Python的sys.argv用法
import sys a = sys.argv[:] print("输入的参数为:", a) def train_start(start_time, end_time, selec ...