In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))

One thing for sure is that all the keys along any path from the root to a leaf in a max/min heap must be in non-increasing/non-decreasing order.

Your job is to check every path in a given complete binary tree, in order to tell if it is a heap or not.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (1), the number of keys in the tree. Then the next line contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.

Output Specification:

For each given tree, first print all the paths from the root to the leaves. Each path occupies a line, with all the numbers separated by a space, and no extra space at the beginning or the end of the line. The paths must be printed in the following order: for each node in the tree, all the paths in its right subtree must be printed before those in its left subtree.

Finally print in a line Max Heap if it is a max heap, or Min Heap for a min heap, or Not Heap if it is not a heap at all.

Sample Input 1:

8
98 72 86 60 65 12 23 50

Sample Output 1:

98 86 23
98 86 12
98 72 65
98 72 60 50
Max Heap

Sample Input 2:

8
8 38 25 58 52 82 70 60

Sample Output 2:

8 25 70
8 25 82
8 38 52
8 38 58 60
Min Heap

Sample Input 3:

8
10 28 15 12 34 9 8 56

Sample Output 3:

10 15 8
10 15 9
10 28 34
10 28 12 56
Not Heap
Solution:
  这道题很简单,和前面的一道题类似
  抓住两个重要条件:
    一个是大根堆,小根堆的特点
    一个是完全二叉树的性质
  然后通过层序遍历序列重构二叉树
  通过序列中第一个数与第二个数的大小比较就可以知道是大根堆还是小根堆【注意,一般不要相信题目中所谓的等于,因为PAT中的节点值就从来没有等于过】
  通过判断节点与其孩子节点的值的大小可知是否满足Heap Tree的性质
  最后使用DFS来输出路径,记得先右再左
  
 #include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
struct Node
{
int val;
Node *l, *r;
Node(int a = ) :val(a), l(nullptr), r(nullptr) {}
};
int n;
vector<int>level;
Node *creatTree(int index)//重构二叉树
{
Node *root = new Node(level[index++]);
queue<Node*>q;
q.push(root);
while (!q.empty() && index<n)
{
Node *p = q.front();
q.pop();
p->l = new Node(level[index++]);
q.push(p->l);
if (index >= n)break;
p->r = new Node(level[index++]);
q.push(p->r);
}
return root;
}
vector<int>res;
void DFS(Node *root, bool isMaxHeap,bool &isHeap)
{
if (root == nullptr)
return;
res.push_back(root->val);
if (isMaxHeap)//大根堆判断
{
if ((root->l && root->l->val > root->val) || (root->r && root->r->val > root->val))
isHeap = false;
}
else//小根堆判断
{
if ((root->l && root->l->val < root->val) || (root->r && root->r->val < root->val))
isHeap = false;
}
if (root->l == nullptr && root->r == nullptr)//输出路径
{
for (int i = ; i < res.size(); ++i)
cout << (i == ? "" : " ") << res[i];
cout << endl;
}
DFS(root->r, isMaxHeap, isHeap);//记得先右再左
DFS(root->l, isMaxHeap, isHeap);
res.pop_back();
}
int main()
{
cin >> n;
level.resize(n);
for (int i = ; i < n; ++i)
cin >> level[i];
Node* root = creatTree();
bool isHeap = true;
bool isMaxHeap = level[] >= level[] ? : ;
DFS(root, isMaxHeap, isHeap);
if (isHeap && isMaxHeap)
cout << "Max Heap" << endl;
else if (isHeap && !isMaxHeap)
cout << "Min Heap" << endl;
else
cout << "Not Heap" << endl;
return ;
}
原谅孩子不会静态重构二叉树吧 :), 静态重构【就是根据序列数位置得到整个数树的形状】是我的硬伤,相信不久的明天我就学会了 ^_^
这里借用一下别人静态重构的代码吧
 #include <iostream>
#include <vector>
using namespace std;
vector<int> v;
int a[], n, isMin = , isMax = ;
void dfs(int index) {
if (index * > n && index * + > n) {
if (index <= n) {
for (int i = ; i < v.size(); i++)
printf("%d%s", v[i], i != v.size() - ? " " : "\n");
}
}
else {
v.push_back(a[index * + ]);
dfs(index * + );
v.pop_back();
v.push_back(a[index * ]);
dfs(index * );
v.pop_back();
}
}
int main() {
cin >> n;
for (int i = ; i <= n; i++)
scanf("%d", &a[i]);
v.push_back(a[]);
dfs();
for (int i = ; i <= n; i++) {
if (a[i / ] > a[i]) isMin = ;
if (a[i / ] < a[i]) isMax = ;
}
if (isMin == )
printf("Min Heap");
else
printf("%s", isMax == ? "Max Heap" : "Not Heap");
return ;
}

  

PAT甲级——A1155 HeapPaths【30】的更多相关文章

  1. PAT 甲级 1147 Heaps (30 分) (层序遍历,如何建树,后序输出,还有更简单的方法~)

    1147 Heaps (30 分)   In computer science, a heap is a specialized tree-based data structure that sati ...

  2. PAT 甲级1057 Stack (30 分)(不会,树状数组+二分)*****

    1057 Stack (30 分)   Stack is one of the most fundamental data structures, which is based on the prin ...

  3. pat 甲级 1057 Stack(30) (树状数组+二分)

    1057 Stack (30 分) Stack is one of the most fundamental data structures, which is based on the princi ...

  4. PAT甲级:1064 Complete Binary Search Tree (30分)

    PAT甲级:1064 Complete Binary Search Tree (30分) 题干 A Binary Search Tree (BST) is recursively defined as ...

  5. PAT甲级题解(慢慢刷中)

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6102219.html特别不喜欢那些随便转载别人的原创文章又不给 ...

  6. PAT甲级1127. ZigZagging on a Tree

    PAT甲级1127. ZigZagging on a Tree 题意: 假设二叉树中的所有键都是不同的正整数.一个唯一的二叉树可以通过给定的一对后序和顺序遍历序列来确定.这是一个简单的标准程序,可以按 ...

  7. PAT甲级1119. Pre- and Post-order Traversals

    PAT甲级1119. Pre- and Post-order Traversals 题意: 假设二叉树中的所有键都是不同的正整数.一个唯一的二进制树可以通过给定的一对后序和顺序遍历序列来确定,也可以通 ...

  8. PAT甲级1057. Stack

    PAT甲级1057. Stack 题意: 堆栈是最基础的数据结构之一,它基于"先进先出"(LIFO)的原理.基本操作包括Push(将元素插入顶部位置)和Pop(删除顶部元素).现在 ...

  9. PAT甲级1026. Table Tennis

    PAT甲级1026. Table Tennis 题意: 乒乓球俱乐部有N张桌子供公众使用.表的编号从1到N.对于任何一对玩家,如果有一些表在到达时打开,它们将被分配给具有最小数字的可用表.如果所有的表 ...

随机推荐

  1. LuaLuaMemorySnapshotDump-master

    https://codeload.github.com/yaukeywang/LuaMemorySnapshotDump/zip/master

  2. Envoy的线程模型[翻译]

    Envoy threading Model 关于envoy 代码的底层文档相当稀少.为了解决这个问题我计划编写一系列文档来描述各个子系统的工作.由于是第一篇, 请让我知道你希望其他主题覆盖哪些内容. ...

  3. PF_INET 与驱动

    https://blog.csdn.net/trustnature/article/details/7849562 ? ? ?

  4. Sass--混合宏的不足

    混合宏在实际编码中给我们带来很多方便之处,特别是对于复用重复代码块.但其最大的不足之处是会生成冗余的代码块.比如在不同的地方调用一个相同的混合宏时.如: @mixin border-radius{ - ...

  5. hibernate 插入Java.uitil.date时时分秒丢失问题解决

    <property name="cj_time" column="cj_time"/>  不需要手动定义类型(定义了只能精确到日) new Date ...

  6. linux firewall

    一.查看防火墙状态1.首先查看防火墙是否开启,如未开启,需要先开启防火墙并作开机自启 systemctl status firewalld 开启防火墙并设置开机自启 systemctl start f ...

  7. 第04章 AOP概述

    第04章 AOP概述 1.AOP概述 ●AOP(Aspect-Oriented Programming,面向切面编程):是一种新的方法论,是对传统 OOP(Object-Oriented Progra ...

  8. $Noip$前的小总结哦

    考试失误点与积累 有点不知道该干嘛了,状态有点差,写点东西.(后面可能会加更一点东西?) 常规错误 \(1.\) 数组开小 \(2.\) \(int\)和\(longlong\) \(3.\) 开某题 ...

  9. Nginx1.6.0+MySQL5.6.19+PHP5.5.14(centos)

    一.配置防火墙,开启80端口.3306端口 CentOS 7.0默认使用的是firewall作为防火墙,这里改为iptables防火墙. 1.关闭firewall: systemctl stop fi ...

  10. python基础:3.高级运算符

    1.异或运算 十进制的异或运算,先转成二进制进行异或,按位进行比较,对应位置相同则为0,对应位置不同则为1,,再从异或结果转成十进制. python中: 1 ^ 1 = 0 1 ^ 2 = 3 1 ^ ...