In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))

One thing for sure is that all the keys along any path from the root to a leaf in a max/min heap must be in non-increasing/non-decreasing order.

Your job is to check every path in a given complete binary tree, in order to tell if it is a heap or not.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (1), the number of keys in the tree. Then the next line contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.

Output Specification:

For each given tree, first print all the paths from the root to the leaves. Each path occupies a line, with all the numbers separated by a space, and no extra space at the beginning or the end of the line. The paths must be printed in the following order: for each node in the tree, all the paths in its right subtree must be printed before those in its left subtree.

Finally print in a line Max Heap if it is a max heap, or Min Heap for a min heap, or Not Heap if it is not a heap at all.

Sample Input 1:

8
98 72 86 60 65 12 23 50

Sample Output 1:

98 86 23
98 86 12
98 72 65
98 72 60 50
Max Heap

Sample Input 2:

8
8 38 25 58 52 82 70 60

Sample Output 2:

8 25 70
8 25 82
8 38 52
8 38 58 60
Min Heap

Sample Input 3:

8
10 28 15 12 34 9 8 56

Sample Output 3:

10 15 8
10 15 9
10 28 34
10 28 12 56
Not Heap
Solution:
  这道题很简单,和前面的一道题类似
  抓住两个重要条件:
    一个是大根堆,小根堆的特点
    一个是完全二叉树的性质
  然后通过层序遍历序列重构二叉树
  通过序列中第一个数与第二个数的大小比较就可以知道是大根堆还是小根堆【注意,一般不要相信题目中所谓的等于,因为PAT中的节点值就从来没有等于过】
  通过判断节点与其孩子节点的值的大小可知是否满足Heap Tree的性质
  最后使用DFS来输出路径,记得先右再左
  
 #include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
struct Node
{
int val;
Node *l, *r;
Node(int a = ) :val(a), l(nullptr), r(nullptr) {}
};
int n;
vector<int>level;
Node *creatTree(int index)//重构二叉树
{
Node *root = new Node(level[index++]);
queue<Node*>q;
q.push(root);
while (!q.empty() && index<n)
{
Node *p = q.front();
q.pop();
p->l = new Node(level[index++]);
q.push(p->l);
if (index >= n)break;
p->r = new Node(level[index++]);
q.push(p->r);
}
return root;
}
vector<int>res;
void DFS(Node *root, bool isMaxHeap,bool &isHeap)
{
if (root == nullptr)
return;
res.push_back(root->val);
if (isMaxHeap)//大根堆判断
{
if ((root->l && root->l->val > root->val) || (root->r && root->r->val > root->val))
isHeap = false;
}
else//小根堆判断
{
if ((root->l && root->l->val < root->val) || (root->r && root->r->val < root->val))
isHeap = false;
}
if (root->l == nullptr && root->r == nullptr)//输出路径
{
for (int i = ; i < res.size(); ++i)
cout << (i == ? "" : " ") << res[i];
cout << endl;
}
DFS(root->r, isMaxHeap, isHeap);//记得先右再左
DFS(root->l, isMaxHeap, isHeap);
res.pop_back();
}
int main()
{
cin >> n;
level.resize(n);
for (int i = ; i < n; ++i)
cin >> level[i];
Node* root = creatTree();
bool isHeap = true;
bool isMaxHeap = level[] >= level[] ? : ;
DFS(root, isMaxHeap, isHeap);
if (isHeap && isMaxHeap)
cout << "Max Heap" << endl;
else if (isHeap && !isMaxHeap)
cout << "Min Heap" << endl;
else
cout << "Not Heap" << endl;
return ;
}
原谅孩子不会静态重构二叉树吧 :), 静态重构【就是根据序列数位置得到整个数树的形状】是我的硬伤,相信不久的明天我就学会了 ^_^
这里借用一下别人静态重构的代码吧
 #include <iostream>
#include <vector>
using namespace std;
vector<int> v;
int a[], n, isMin = , isMax = ;
void dfs(int index) {
if (index * > n && index * + > n) {
if (index <= n) {
for (int i = ; i < v.size(); i++)
printf("%d%s", v[i], i != v.size() - ? " " : "\n");
}
}
else {
v.push_back(a[index * + ]);
dfs(index * + );
v.pop_back();
v.push_back(a[index * ]);
dfs(index * );
v.pop_back();
}
}
int main() {
cin >> n;
for (int i = ; i <= n; i++)
scanf("%d", &a[i]);
v.push_back(a[]);
dfs();
for (int i = ; i <= n; i++) {
if (a[i / ] > a[i]) isMin = ;
if (a[i / ] < a[i]) isMax = ;
}
if (isMin == )
printf("Min Heap");
else
printf("%s", isMax == ? "Max Heap" : "Not Heap");
return ;
}

  

PAT甲级——A1155 HeapPaths【30】的更多相关文章

  1. PAT 甲级 1147 Heaps (30 分) (层序遍历,如何建树,后序输出,还有更简单的方法~)

    1147 Heaps (30 分)   In computer science, a heap is a specialized tree-based data structure that sati ...

  2. PAT 甲级1057 Stack (30 分)(不会,树状数组+二分)*****

    1057 Stack (30 分)   Stack is one of the most fundamental data structures, which is based on the prin ...

  3. pat 甲级 1057 Stack(30) (树状数组+二分)

    1057 Stack (30 分) Stack is one of the most fundamental data structures, which is based on the princi ...

  4. PAT甲级:1064 Complete Binary Search Tree (30分)

    PAT甲级:1064 Complete Binary Search Tree (30分) 题干 A Binary Search Tree (BST) is recursively defined as ...

  5. PAT甲级题解(慢慢刷中)

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6102219.html特别不喜欢那些随便转载别人的原创文章又不给 ...

  6. PAT甲级1127. ZigZagging on a Tree

    PAT甲级1127. ZigZagging on a Tree 题意: 假设二叉树中的所有键都是不同的正整数.一个唯一的二叉树可以通过给定的一对后序和顺序遍历序列来确定.这是一个简单的标准程序,可以按 ...

  7. PAT甲级1119. Pre- and Post-order Traversals

    PAT甲级1119. Pre- and Post-order Traversals 题意: 假设二叉树中的所有键都是不同的正整数.一个唯一的二进制树可以通过给定的一对后序和顺序遍历序列来确定,也可以通 ...

  8. PAT甲级1057. Stack

    PAT甲级1057. Stack 题意: 堆栈是最基础的数据结构之一,它基于"先进先出"(LIFO)的原理.基本操作包括Push(将元素插入顶部位置)和Pop(删除顶部元素).现在 ...

  9. PAT甲级1026. Table Tennis

    PAT甲级1026. Table Tennis 题意: 乒乓球俱乐部有N张桌子供公众使用.表的编号从1到N.对于任何一对玩家,如果有一些表在到达时打开,它们将被分配给具有最小数字的可用表.如果所有的表 ...

随机推荐

  1. 深入理解DiscoveryClient

    Spring Cloud Commons 提供的抽象 最早的时候服务发现注册都是通过DiscoveryClient来实现的,随着版本变迁把DiscoveryClient服务注册抽离出来变成了Servi ...

  2. BUUCTF--新年快乐

    测试文件:https://buuoj.cn/files/bbf9f68a97fd551edec384914d4f3fbe/93c43c5c-3d4d-4d17-a9a1-4ffb65ebb2fb.zi ...

  3. ABP框架按条件导出

    web层 .js导出事件: //导出为excel文档 $('#btn-export').click(function () { //得到查询的参数 var temp = { //这里的键的名字和控制器 ...

  4. OC学习--继承

     1.什么是继承? 继承是指一个对象直接使用另一对象的属性和方法. 继承可以使得子类具有父类的各种属性和方法,而不是再次编写相同的代码.在子类继承父类的同时,可以重新定义某些属性,并重写某些方法, 即 ...

  5. C/C++字符串和其他类型转换

    C语言中string char int类型转换 转载自:http://blog.sina.com.cn/s/blog_63041bb801016b4x.html ,char型数字转换为int型 &qu ...

  6. Java并发(基础知识)—— Java中断机制

    上文讲解了Java线程的创建.启动以及停止,在讲到停止线程时说到了Java中断,Java中断是停止线程的一种协作机制,本文打算对Java中断机制进行详细讲解. 在网上搜索Java中断机制,发现两篇好文 ...

  7. Linux系统基于fork()新进程的创建

    作者:严哲璟 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 fork属于系 ...

  8. AbstractQueuedSynchronizer简单使用

    AQS是JUC中很多同步组件的构建基础,简单来讲,它内部实现主要是状态变量state和一个FIFO队列来完成,同步队列的头结点是当前获取到同步状态的结点,获取同步状态state失败的线程,会被构造成一 ...

  9. 关于vue开发的常见问题

    一.vue单页面回退丢失参数的问题 可能有些跟我一样的新手同学会遇到一个问题,就是比如我从商品详情跳转到购物车,没问题,但是,购物车页面中点击浏览器的回退按钮,返回到detail页面时,你的动态数据( ...

  10. 如何在pycharm中进入shell脚本调试代码

    首先在Teramal终端 输入python manage.py shell 然后进行下图操作来调试代码