Codeforces 1255E Send Boxes to Alice(前缀和+枚举+数论)
我们考虑前缀和sum[i],如果将a[i+1]中的一个塞入a[i]中,则不影响sum[i+1],但是sum[i]++,如果将a[i]中的一个塞入a[i+1],则不影响sum[i+1],但是sum[i]--,我们可以发现操作一次相当于将一个sum[i]+1或者到sum[i]-1,那么题意就变成了操作多少次可以使得所有的sum[i]为某一个k的倍数,那么一个sum[i]变成k的倍数操作次数最小必然为min(sum[i]%k,k-sum[i]%k),那么接下如何考虑k呢,显然k是sum[n]的一个因子,否则必然不可能,但是sum[n]范围1e12,枚举所有因子高达212个,显然不行,但是其实我们只需要枚举质因子即可,可以得出结论他的质因子所得的操作次数最小值必然不超过k所得的操作数。总体复杂度O(12n)。
// ——By DD_BOND #include<bits/stdc++.h> #define pb push_back using namespace std; typedef long long ll; const ll LLMAX=2e18;
const int MAXN=1e6+; vector<ll>prime;
ll a[MAXN],sum[MAXN]; int main(void)
{
ios::sync_with_stdio(false); cin.tie(); cout.tie();
ll n,ans=LLMAX; cin>>n;
for(int i=;i<=n;i++) cin>>a[i],sum[i]=sum[i-]+a[i];
if(sum[n]==) return cout<<<<endl,;
if(sum[n]==) return cout<<-<<endl,;
ll p=sum[n];
for(ll i=;i*i<=sum[n];i++)
while(p%i==){
prime.pb(i);
p/=i;
}
if(p!=) prime.pb(p);
prime.erase(unique(prime.begin(),prime.end()),prime.end());
for(auto i:prime){
ll cur=;
for(int j=;j<=n;j++) cur+=min(sum[j]%i,i-sum[j]%i);
ans=min(ans,cur);
}
cout<<ans<<endl;
return ;
}
Codeforces 1255E Send Boxes to Alice(前缀和+枚举+数论)的更多相关文章
- Send Boxes to Alice
E. Send Boxes to Alice 首先求出每一个位置的前缀和. 对答案进行复杂度为\(\sqrt{a[n]}\)的遍历,因为最后的答案不可能大于\(\sqrt{a[n]}\) for(ll ...
- Codeforces Round #601 (Div. 2) E2. Send Boxes to Alice (Hard Version)
Codeforces Round #601 (Div. 2) E2. Send Boxes to Alice (Hard Version) N个盒子,每个盒子有a[i]块巧克力,每次操作可以将盒子中的 ...
- Codeforces Round #601 (Div. 2) E1 Send Boxes to Alice (Easy Version)
#include <bits/stdc++.h> using namespace std; typedef long long ll; ; int a[N]; int n; bool pr ...
- E1.Send Boxes to Alice(Easy Version)//中位数
发送盒子给Alice(简单版本) 题意:准备n个盒子放巧克力,从1到n编号,初始的时候,第i个盒子有ai个巧克力. Bob是一个聪明的家伙,他不会送n个空盒子给Alice,换句话说,每个盒子里面都有巧 ...
- Codeforces1254B2 Send Boxes to Alice (Hard Version)(贪心)
题意 n个数字的序列a,将i位置向j位置转移x个(a[i]-x,a[j]+x)的花费为\(x\times |i-j|\),最终状态可行的条件为所有a[i]均被K整除(K>1),求最小花费 做法 ...
- E2. Send Boxes to Alice (Hard Version)
秒的有点难以理解:https://blog.csdn.net/weixin_42868863/article/details/103200132 #include<bits/stdc++.h&g ...
- E1. Send Boxes to Alice (Easy Version)
题解: 保存每个1的位置.然后记录1的总个数cnt,如果存在一个k使得这个k是每个集合的倍数,那么为了使操作次数最小,这个k应该是cnt的质因子.(因为都是每个集合的数目1,使每个集合的数目变为2需要 ...
- CodeForces 816B Karen and Coffee(前缀和,大量查询)
CodeForces 816B Karen and Coffee(前缀和,大量查询) Description Karen, a coffee aficionado, wants to know the ...
- BZOJ 1218: [HNOI2003]激光炸弹( 前缀和 + 枚举 )
虽然source写着dp , 而且很明显dp可以搞...但是数据不大 , 前缀和 + 枚举也水的过去..... -------------------------------------------- ...
随机推荐
- 【NOIP2012模拟10.25】单元格
题目 在一个R行C列的表格里,我们要选出3个不同的单元格.但要满足如下的两个条件: (1)选中的任意两个单元格都不在同一行. (2)选中的任意两个单元格都不在同一列. 假设我们选中的单元格分别是:A, ...
- 在Tomcat中部署Java Web应用程序几种方式
在Tomcat中部署Java Web应用程序有两种方式:静态部署和动态部署.在下文中$CATALINA_HOME指的是Tomcat根目录. 一.静态部署 静态部署指的是我们在服务器启动之前部 ...
- kong CentOS7网关安装
1.先安装postgres数据库,yum安装.yum install postgresql96yum install postgresql96-server配置环境变量export PGDATA=/v ...
- rmq——同步、异步、单向、rocketMQ console、消费模式
官网上下载:rocketmq-all-4.5.0-bin-release 配置环境变量:
- webpack-第一个demo
1.webpack概念 webpack是前端的一个项目构建工具,它是基于node.js开发出来的一个前端工具:借助webpack这个前端自动化构建工具,可以完美实现资源的合并.打包.压缩.混淆等诸多功 ...
- 【BZOJ1098】办公楼biu(补图,bfs,链表)
题意:有n个点m条边,要求将点尽可能多的分成若干个部分,使得若两个点不在同一个部分则他们之间必定有边 n<=1e5,m<=2e6 思路:From https://blog.csdn.net ...
- vue-router(转)——基本使用 + 路由守卫无限循环问题
路由守卫无限循环问题 https://www.jianshu.com/p/1187f8f74a72 学习目的 学习Vue的必备技能,必须 熟练使用 Vue-router,能够在实际项目中运用. Vue ...
- Java字符串的不可变性
声明一个字符串引用变量: String s = "abcd"; s是一个引用变量,指向 堆内存中的字符串常量 "abcd" 再声明一个字符串引用变量: Str ...
- Delphi XE2 之 FireMonkey 入门(33) - 控件基础: TFmxObject: SaveToStream、LoadFromStream、SaveToBinStream、LoadFromBinStream
Delphi XE2 之 FireMonkey 入门(33) - 控件基础: TFmxObject: SaveToStream.LoadFromStream.SaveToBinStream.LoadF ...
- php5.6编译安装apache
1.下载源码包wget 网址/php-5.6.30.tar.gz2.解压源码包tar -zxvf php-5.6.30.tar.gz3.创建一个安装目录mkdir /usr/local/php4.进入 ...