[BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)

题面

一棵二叉树的所有点的点权都是给定的集合中的一个数。

让你求出1到m中所有权值为i的二叉树的个数。

两棵树不同当且仅当树的形态不一样或者是树的某个点的点权不一样

分析

设\(c(i)\)表示数值i是否在集合中。\(f(i)\)表示权值为i的二叉树的个数。那么

\[f(n)=\sum_{i=1}^n c(i) \sum_{j=0}^{n-i} f(j)f(n-i-j)
\]

其中\(i\)表示根节点的权值,那么左右子树的权值和为\(n-i\),枚举左右子树分别的权值\(j,n-i-j\),为\(\sum_{j=0}^{n-i} f(j)f(n-i-j)\)

我们把式子化成卷积的形式,设\(F,C\)为\(f,c\)的生成函数

\(F(x)=F(x)^2C(x)+1\)

解函数方程,得:

\[F(x)=\frac{1 \pm {\sqrt {1-4C(x)}} }{ 2C(x)}=\frac{2}{1 \mp \sqrt{1-4C(x)}}
\]

如果符号取-,那么x=0时分母为0无意义。

因此\(F(x)=\frac{2}{1+\sqrt{1-4C(x)}}\)

多项式开方和多项式求逆即可。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define maxn 400000
#define G 3
#define invG 332748118
#define inv2 499122177
#define mod 998244353
using namespace std;
typedef long long ll;
inline ll fast_pow(ll x,ll k){
ll ans=1;
while(k){
if(k&1) ans=ans*x%mod;
x=x*x%mod;
k>>=1;
}
return ans;
}
inline ll inv(ll x){
return fast_pow(x,mod-2);
} void NTT(ll *x,int n,int type){
static int rev[maxn+5];
int tn=1,k=0;
while(tn<n){
tn*=2;
k++;
}
for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(k-1));
for(int i=0;i<n;i++) if(i<rev[i]) swap(x[i],x[rev[i]]);
for(int len=1;len<n;len*=2){
int sz=len*2;
ll gn1=fast_pow((type==1?G:invG),(mod-1)/sz);
for(int l=0;l<n;l+=sz){
int r=l+len-1;
ll gnk=1;
for(int i=l;i<=r;i++){
ll tmp=x[i+len];
x[i+len]=(x[i]-gnk*tmp%mod+mod)%mod;
x[i]=(x[i]+gnk*tmp%mod)%mod;
gnk=gnk*gn1%mod;
}
}
}
if(type==-1){
ll invn=inv(n);
for(int i=0;i<n;i++) x[i]=x[i]*invn%mod;
}
}
void mul(ll *a,ll *b,ll *ans,int n){
NTT(a,n,1);
NTT(b,n,1);
for(int i=0;i<n;i++) ans[i]=a[i]*b[i]%mod;
NTT(ans,n,-1);
} void get_inv(ll *a,ll *b,int n){
static ll tmpa[maxn+5],tmpb[maxn+5];
b[0]=inv(a[0]);
int len;
for(len=1;len<n*2;len*=2){
int sz=len*2;
for(int i=0;i<len;i++){
tmpa[i]=a[i];
tmpb[i]=b[i];
}
NTT(tmpa,sz,1);
NTT(tmpb,sz,1);
for(int i=0;i<sz;i++) b[i]=tmpb[i]*(2-tmpb[i]*tmpa[i]%mod+mod)%mod;
NTT(b,sz,-1);
for(int i=len;i<sz;i++) b[i]=0;
}
for(int i=0;i<len;i++) tmpa[i]=tmpb[i]=0;
for(int i=n;i<len;i++) b[i]=0;
} void get_sqrt(ll *a,ll *b,int n){
static ll tmpa[maxn+5],invb[maxn+5];
b[0]=1;
int len;
for(len=1;len<n*2;len*=2){
int sz=len*2;
for(int i=0;i<len;i++) tmpa[i]=a[i];
get_inv(b,invb,len);
mul(tmpa,invb,tmpa,sz);
for(int i=0;i<len;i++) b[i]=inv2*(tmpa[i]+b[i])%mod;
for(int i=len;i<sz;i++) b[i]=0;
}
for(int i=0;i<len;i++) tmpa[i]=invb[i]=0;
for(int i=n;i<len;i++) b[i]=0;
} int n,m;
ll c[maxn+5],sqtc[maxn+5],isqtc[maxn+5];
int main(){
int x;
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d",&x);
c[x]++;
}
int dn=1;
while(dn<=m) dn*=2;
for(int i=1;i<dn;i++) c[i]=((-4)*c[i]+mod)%mod;
c[0]++;//sqrt(1-4C)
get_sqrt(c,sqtc,dn);
sqtc[0]++;//1+sqrt(1-4C)
get_inv(sqtc,isqtc,dn);
for(int i=0;i<=m;i++) isqtc[i]=isqtc[i]*2%mod;//2/(1+sqrt(1-4C)
for(int i=1;i<=m;i++) printf("%lld\n",isqtc[i]);
}

[BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)的更多相关文章

  1. BZOJ #3625 CF #438E 小朋友和二叉树

    清真多项式题 BZOJ #3625 codeforces #438E 题意 每个点的权值可以在集合$ S$中任取 求点权和恰好为$[1..n]$的不同的二叉树数量 数据范围全是$ 10^5$ $ So ...

  2. [BZOJ3625][CF438E]小朋友和二叉树 (多项式开根,求逆)

    题面 题解 设多项式的第a项为权值和为a的二叉树个数,多项式的第a项表示是否为真,即 则,所以F是三个多项式的卷积,其中包括自己: ,1是F的常数项,即. 我们发现这是一个一元二次方程,可以求出,因为 ...

  3. 【BZOJ3625】【CF438E】小朋友和二叉树 NTT 生成函数 多项式开根 多项式求逆

    题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\ ...

  4. BZOJ 3625:小朋友和二叉树 多项式开根+多项式求逆+生成函数

    生成函数这个东西太好用了~ code: #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s&q ...

  5. 【BZOJ3625】【codeforces438E】小朋友和二叉树 生成函数+多项式求逆+多项式开根

    首先,我们构造一个函数$G(x)$,若存在$k∈C$,则$[x^k]G(x)=1$. 不妨设$F(x)$为最终答案的生成函数,则$[x^n]F(x)$即为权值为$n$的神犇二叉树个数. 不难推导出,$ ...

  6. Codeforces 250 E. The Child and Binary Tree [多项式开根 生成函数]

    CF Round250 E. The Child and Binary Tree 题意:n种权值集合C, 求点权值和为1...m的二叉树的个数, 形态不同的二叉树不同. 也就是说:不带标号,孩子有序 ...

  7. BZOJ3625 [Codeforces Round #250]小朋友和二叉树(生成函数+多项式开根)

    设f(n)为权值为n的神犇二叉树个数.考虑如何递推求这个东西. 套路地枚举根节点的左右子树.则f(n)=Σf(i)f(n-i-cj),cj即根的权值.卷积的形式,cj也可以通过卷上一个多项式枚举.可以 ...

  8. [BZOJ3625][Codeforces Round #250]小朋友和二叉树 多项式开根+求逆

    https://www.lydsy.com/JudgeOnline/problem.php?id=3625 愉快地列式子.设\(F[i]\)表示权值为\(i\) 的子树的方案数,\(A[i]\)为\( ...

  9. 【XSY2730】Ball 多项式exp 多项式ln 多项式开根 常系数线性递推 DP

    题目大意 一行有\(n\)个球,现在将这些球分成\(k\) 组,每组可以有一个球或相邻两个球.一个球只能在至多一个组中(可以不在任何组中).求对于\(1\leq k\leq m\)的所有\(k\)分别 ...

随机推荐

  1. Nginx之概念和简介

    Nginx是什么? 代理服务器,处于客户端和服务器端之间的一台服务器,不负责处理请求. 主要作用是什么? 1.负载均衡: 高并发场景下,Nginx代理服务器按一定规则将请求分发,从而使服务器能有条不紊 ...

  2. 使用jquery给html标签加点击事件

    //直接给所有img标签绑定click事件 $("img").click(function(){ alert('你点击了图片'); }) //使用bind方法绑定click事件 $ ...

  3. Power-Aware GateSim Debug

    For PAG debug, the following steps may be useful. 1. Get correct netlists from PD which contain powe ...

  4. AJAX 实例解析

    AJAX 实例 为了帮助您理解 AJAX 的工作原理,我们创建了一个小型的 AJAX 应用程序: 实例 AJAX 不是新的编程语言,而是一种使用现有标准的新方法.深圳dd马达 AJAX 是与服务器交换 ...

  5. React Native中集成友盟社会化分享-----童叟无欺

    1.下载所需的jar,下载地址https://developer.umeng.com/sdk/reactnative?spm=a211g2.211692.0.0.28967d238GW6mC 2.将以 ...

  6. c++11相关特性

    前言 发现好多情况下都会用到c++11的新特性啊. 所以稍稍总结一下,只会粗略的说,不会详细的讲…… upd.csp-s可能不是c++11标准,请慎用.(博主考试CE后的善意提醒) 1.auto&am ...

  7. (77)一文了解Redis

    为什么我们做分布式使用Redis? 绝大部分写业务的程序员,在实际开发中使用 Redis 的时候,只会 Set Value 和 Get Value 两个操作,对 Redis 整体缺乏一个认知.这里对  ...

  8. 实验报告二&第四周学习总结

    一.实验目的: (1) 掌握类的定义,熟悉属性.构造函数.方法的调用,掌握用类作为类型声明变量和方法返回值: (2) 理解类和对象的区别,掌握构造函数的使用,熟悉通过对象名引用实例的方法和属性: (3 ...

  9. Oracle Mysql MSSql 三种数据库 随机查询 条 语句

    1. Oracle,随机查询查询语句-20条 select * from (  select  *  from 表名 order by dbms_random.value ) where rownum ...

  10. maven 安装jar包命令

    以 spring-context-support-3.1.0.RELEASE.jar 为例,在 @3图中已经给出这个 jar 包的 groupId,artifactId,version信息,手动安装的 ...