upc组队赛17 Greatest Common Divisor【gcd+最小质因数】
Greatest Common Divisor
题目链接
题目描述
There is an array of length n, containing only positive numbers.
Now you can add all numbers by 1 many times. Please find out the minimum times you need to perform to obtain an array whose greatest common divisor(gcd) is larger than 1 or state that it is impossible.
You should notice that if you want to add one number by 1, you need to add all numbers by 1 at the same time.
输入
The first line of input file contains an integer T (1≤T≤20), describing the number of test cases.
Then there are 2×T lines, with every two lines representing a test case.
The first line of each case contains a single integer n (1≤n≤105) described above.
The second line of that contains n integers ranging in [1,109].
输出
Please output T lines exactly.
For each line, output Case d: (d represents the order of the test case) first. Then output the answer in the same line. If there is no way for that, print -1 instead.
样例输入
3
1
2
5
2 5 9 5 7
5
3 5 7 9 11
样例输出
Case 1: 0
Case 2: -1
Case 3: 1
提示
Sample 1: You do not need to do anything because its gcd is already larger than 1.
Sample 2: It is impossible to obtain that array.
Sample 3: You just need to add all number by 1 so that gcd of this array is 2.
题意
问几次操作能使所有数的最小公约数不为1
题解
首先需要求出各个数之间的差,求出各个差的gcd;
然后找到gcd的最小质因数g ,操作的次数为距离a[0]最近的g的倍数-a[0]; 即g - a[0] % g;
还有其他各种特判,在代码中说明
代码
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for(int i=a;i<n;i++)
#define scac(x) scanf("%c",&x)
#define sca(x) scanf("%d",&x)
#define sca2(x,y) scanf("%d%d",&x,&y)
#define sca3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define scl(x) scanf("%lld",&x)
#define scl2(x,y) scanf("%lld%lld",&x,&y)
#define scl3(x,y,z) scanf("%lld%lld%lld",&x,&y,&z)
#define pri(x) printf("%d\n",x)
#define pri2(x,y) printf("%d %d\n",x,y)
#define pri3(x,y,z) printf("%d %d %d\n",x,y,z)
#define prl(x) printf("%lld\n",x)
#define prl2(x,y) printf("%lld %lld\n",x,y)
#define prl3(x,y,z) printf("%lld %lld %lld\n",x,y,z)
#define mst(x,y) memset(x,y,sizeof(x))
#define ll long long
#define LL long long
#define pb push_back
#define mp make_pair
#define P pair<double,double>
#define PLL pair<ll,ll>
#define PI acos(1.0)
#define eps 1e-6
#define inf 1e17
#define mod 1e9+7
#define INF 0x3f3f3f3f
#define N 1005
const int maxn = 1e5+10;
ll a[maxn],b[maxn];
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
int n;
int main()
{
int t;
sca(t);
int cas = 1;
while(t--)
{
sca(n);
rep(i,0,n) scl(a[i]);
if(n == 1) //如果只有一个数
{
if(a[0] == 1) printf("Case %d: 1\n",cas++);
else printf("Case %d: 0\n",cas++);
continue;
}
sort(a,a+n);
int cnt = 0;
rep(i,1,n)
{
if(a[i] != a[i-1]) //如果数相同就跳过
b[cnt++] = a[i] - a[i-1];
}
if(cnt == 0)//如果所有数都相同
{
if(a[0] == 1) printf("Case %d: 1\n",cas++);
else printf("Case %d: 0\n",cas++);
continue;
}
ll g = b[0];
rep(i,1,cnt) g = gcd(g,b[i]);
if(g == 1) //不可能的情况
{
printf("Case %d: -1\n",cas++);
continue;
}
if(gcd(g,a[0]) > 1) g = gcd(g,a[0]);
rep(i,2,100000)
{
if(g % i == 0)
{
g = i;
break;
}
}
ll ans;
if(a[0] % g) ans = g - a[0] % g;
else ans = 0;
printf("Case %d: %lld\n",cas++,ans);
}
}
upc组队赛17 Greatest Common Divisor【gcd+最小质因数】的更多相关文章
- 最大公约数Greatest Common Divisor(GCD)
一 暴力枚举法 原理:试图寻找一个合适的整数i,看看这个整数能否被两个整形参数numberA和numberB同时整除.这个整数i从2开始循环累加,一直累加到numberA和numberB中较小参数的一 ...
- Greatest common divisor(gcd)
欧几里得算法求最大公约数 If A = 0 then GCD(A,B)=B, since the GCD(0,B)=B, and we can stop. If B = 0 then GCD(A,B) ...
- CCPC2018 桂林 G "Greatest Common Divisor"(数学)
UPC备战省赛组队训练赛第十七场 with zyd,mxl G: Greatest Common Divisor 题目描述 There is an array of length n, contain ...
- 2018CCPC桂林站G Greatest Common Divisor
题目描述 There is an array of length n, containing only positive numbers.Now you can add all numbers by ...
- [UCSD白板题] Greatest Common Divisor
Problem Introduction The greatest common divisor \(GCD(a, b)\) of two non-negative integers \(a\) an ...
- 845. Greatest Common Divisor
描述 Given two numbers, number a and number b. Find the greatest common divisor of the given two numbe ...
- 最大公约数和最小公倍数(Greatest Common Divisor and Least Common Multiple)
定义: 最大公约数(英语:greatest common divisor,gcd).是数学词汇,指能够整除多个整数的最大正整数.而多个整数不能都为零.例如8和12的最大公因数为4. 最小公倍数是数论中 ...
- greatest common divisor
One efficient way to compute the GCD of two numbers is to use Euclid's algorithm, which states the f ...
- hdu 5207 Greatest Greatest Common Divisor 数学
Greatest Greatest Common Divisor Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/ ...
随机推荐
- ssh远程钥匙对连接
1.服务器必须启动ssh服务 2.在客户机执行命令:ssh-keygen -t rsa 两次回车即可 3.在客户机家目录下的.ssh\下生成钥匙对 4.将公钥传输到要连接的服务器主机要连接的用户家目录 ...
- FZUOJ-2273 Triangles
Problem 2273 Triangles Accept: 109 Submit: 360 Time Limit: 1000 mSec Memory Limit : 262144 KB ...
- ES6判断当前页面是否微信浏览器中打开
1.使用jq判断是否用微信浏览器打开页面 var is_weixin = (function(){return navigator.userAgent.toLowerCase().indexOf('m ...
- hihocoder1954 : 压缩树
传送门 首先求出缩一个点 $x$ 的贡献,就是缩 $x$ 的父亲的贡献加上 $x$ 的子树多减少的深度 假设此时缩父亲的贡献已经考虑过了,那么 $x$ 的子树多减少的深度就是子树的节点数 注意此时要满 ...
- Spring boot集成Swagger,并配置多个扫描路径
Spring boot集成Swagger,并配置多个扫描路径 1:认识Swagger Swagger 是一个规范和完整的框架,用于生成.描述.调用和可视化 RESTful 风格的 Web 服务.总体目 ...
- 输入某人出生日期(以字符串方式输入,如1987-4-1)使用DateTime和TimeSpan类,(1)计算其人的年龄;(2)计算从现在到其60周岁期间,总共多少天。
http://blog.csdn.net/w92a01n19g/article/details/8764116 using System;using System.Collections.Generi ...
- Spring Cloud Stream监听已存在的Queues/Exchanges
环境准备 rabbitmq已运行,端口5672,控制台web端口15672,用户名密码guest/guest 引入spring cloud stream依赖 compile('org.springfr ...
- Ubuntu16.04 启用root权限
装了Ubuntu 16.04之后想使用超级权限对系统进行操作 使用命令 su - 切换超级用户,提示输入密码,却怎么都不对,网上找的资料说是没有启用root权限,于是根据网上提供的方法启用root权限 ...
- lvm分区创建和扩容
shell> fdisk /dev/xvdb #### 选择磁盘 Command (m for help): m #### 帮助 Command action a toggle a bootab ...
- 前端面试题(4)JavaScript
前端面试题JavaScript(一) JavaScript的组成 JavaScript 由以下三部分组成: ECMAScript(核心):JavaScript 语言基础 DOM(文档对象模型):规定了 ...