在RNN(1)中,我们将带有Reccurent Connection的node依照时间维度展开成了如下的形式:

在每个时刻t=0,1,2,3,...,神经网络的输出都会产生error:E0,E1,E2,E3,....。同Feedforward Neural Network一样,RNN也使用Backpropagation来更新参数V,W,U,只不过对于RNN,该算法称为Backpropagation Through Time(BPTT)。其算法思路为:根据各个时刻的输出(如果有),计算各个时刻的Loss Function(Error),而后对各个时刻的loss求和。如果使用mini-batch,则再对batch内的examples求和,计算Cost Function。而后分别对V,W,U求梯度,最后最梯度下降。

在本例中,我们设定从某个时刻的状态st,到最终的输出,一路经过:与权重V相乘得到输出值ot;转换为Softmax输出概率;Cost Function使用Cross-entropy,得到t时刻的误差值Et。基于此设定,我们来看该误差在V上的梯度:

可以看出,t时刻所产生误差,在V上的梯度,只与当前时刻的状态与输出有关。下面再来看Et在W上的梯度:

在上式中,st的计算公式为:

其中f(z)是activation function,而st-1也是w的函数,所以在求梯度时不能简单视其为常量。经过推导后得出:

上式是误差在各个时间分量上的梯度之和,可以看出,某个时间t上的误差Et,会延时间方向反向传播(Backpropagation Through Time),如下图:

而上式中的,dSt/dSk本身就是链式法则,我们展开后可以得到类似Feedforward NN里Gradient Vanishing Problemactivation function偏导数连程形式。据此可以知晓,虽然Et在W上的梯度是求和的形式,看似考虑了该误差与所有时间t之间的关系,实际上该误差随着t维度上深度的增加逐渐衰减。而在参数U上面,同样也存在了此Gradient Vanishing的问题。

从而,我们的RNN模型无法获取到Long term dependencies. 例如:The country I traveled with my wife Mia in 2013 summer holiday is Japan ,这里需要填写的词是一个国家的名字。GRU和LSTM会解决此问题。

Recurrent Neural Network(2):BPTT and Long-term Dependencies的更多相关文章

  1. Recurrent Neural Network系列3--理解RNN的BPTT算法和梯度消失

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 这是RNN教程的第三部分. 在前面的教程中,我们从头实现了一个循环 ...

  2. Recurrent Neural Network系列4--利用Python,Theano实现GRU或LSTM

    yi作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORK ...

  3. Recurrent Neural Network[survey]

    0.引言 我们发现传统的(如前向网络等)非循环的NN都是假设样本之间无依赖关系(至少时间和顺序上是无依赖关系),而许多学习任务却都涉及到处理序列数据,如image captioning,speech ...

  4. Recurrent Neural Network系列1--RNN(循环神经网络)概述

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  5. Recurrent Neural Network(循环神经网络)

    Reference:   Alex Graves的[Supervised Sequence Labelling with RecurrentNeural Networks] Alex是RNN最著名变种 ...

  6. Recurrent Neural Network系列2--利用Python,Theano实现RNN

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  7. 循环神经网络(Recurrent Neural Network,RNN)

    为什么使用序列模型(sequence model)?标准的全连接神经网络(fully connected neural network)处理序列会有两个问题:1)全连接神经网络输入层和输出层长度固定, ...

  8. 【NLP】Recurrent Neural Network and Language Models

    0. Overview What is language models? A time series prediction problem. It assigns a probility to a s ...

  9. (zhuan) Recurrent Neural Network

    Recurrent Neural Network 2016年07月01日  Deep learning  Deep learning 字数:24235   this blog from: http:/ ...

随机推荐

  1. HDU-1394 Minimum Inversion Number (逆序数,线段树或树状数组)

    The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that ...

  2. Python中map和reduce函数??

    ①从参数方面来讲: map()函数: map()包含两个参数,第一个是参数是一个函数,第二个是序列(列表或元组).其中,函数(即map的第一个参数位置的函数)可以接收一个或多个参数. reduce() ...

  3. Xilinx源语-------FDRE

    1.源语---FDRE FDRE代表一个单D型触发器,含的有五个信号分别为:  数据(data,D).时钟使能(Clock enable,CE).时钟(Clock).同步复位(synchronous ...

  4. JVM虚拟机基础知识

    1. Java的发展 Java之父:詹姆斯·高斯林 2. Java的技术体系 Java 程序设计语言 JVM class文件格式 编译器 Java API 第三方Java类库 三个版本: Java S ...

  5. java 中的引用类型

    GC基本原理 GC (Garbage Collection)的基本原理:将内存中不再被使用的对象进行回收,GC中用于回收的方法称为收集器,由于GC需要消耗一些资源和时间,Java在对对象的生命周期特征 ...

  6. Tomcat支持SSL加密网站

    配置Tomcat,以支持SSL对网站加密,关键性配置如下: 思路:在tomcat服务器web1上做相应配置->客户端测试. 1.创建加密用的私钥和证书文件 [root@web1 ~]# keyt ...

  7. centos7 内网可达,外网不可达

    参考:https://www.cnblogs.com/operationhome/p/10207257.html 网关地址改为192.168.1.1

  8. JUC并发工具类

    原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/11449367.html java.util.concurrent及其子包,集中了Java并发的各种基础 ...

  9. Change the environment variable for python code running

    python程序运行中改变环境变量: Trying to change the way the loader works for a running Python is very tricky; pr ...

  10. spring security 权限框架原理

    spring security 权限框架原理