Histograms of Sparse Codes for Object Detection用于目标检测的稀疏码直方图
Abstract
Object detection has seen huge progress in recent years, much thanks to the heavily-engineered Histograms of Oriented Gradients (HOG) features. Can we go beyond gradients and do better than HOG? We provide an affirmative answer by proposing and investigating a sparse representation for object detection, Histograms of Sparse Codes (HSC).We compute sparse codes with dictionaries learned from data using K-SVD, and aggregate per-pixel sparse codes to form local histograms. We intentionally keep true to the sliding window framework (with mixtures and parts) and only change the underlying features. To keep training (and testing) efficient, we apply dimension reduction by computing SVD on learned models, and adopt supervised training where latent positions of roots and parts are given externally e.g. from a HOG-based detector. By learning and using local representations that are much more expressive than gradients, we demonstrate large improvements over the state of the art on the PASCAL benchmark for both rootonly and part-based models.
Histograms of Sparse Codes for Object Detection用于目标检测的稀疏码直方图的更多相关文章
- CVPR2020论文解读:3D Object Detection三维目标检测
CVPR2020论文解读:3D Object Detection三维目标检测 PV-RCNN:Point-Voxel Feature Se tAbstraction for 3D Object Det ...
- Mask R-CNN用于目标检测和分割代码实现
Mask R-CNN用于目标检测和分割代码实现 Mask R-CNN for object detection and instance segmentation on Keras and Tenso ...
- 带你读AI论文丨用于目标检测的高斯检测框与ProbIoU
摘要:本文解读了<Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection&g ...
- Sparse R-CNN: End-to-End Object Detection with Learnable Proposals 论文解读
前言 事实上,Sparse R-CNN 很多地方是借鉴了去年 Facebook 发布的 DETR,当时应该也算是惊艳众人.其有两点: 无需 nms 进行端到端的目标检测 将 NLP 中的 Transf ...
- Towards Universal Object Detection by Domain Attention
论文及代码 论文地址:https://arxiv.org/abs/1904.04402 代码:http://www.svcl.ucsd.edu/projects/universal-detection ...
- zz——Recent Advances on Object Detection in MSRA
本文由DataFun社区根据微软亚洲研究院视觉组Lead Researcher Jifeng Dai老师在2018 AI先行者大会中分享的<Recent Advances on Object D ...
- [论文理解] Acquisition of Localization Confidence for Accurate Object Detection
Acquisition of Localization Confidence for Accurate Object Detection Intro 目标检测领域的问题有很多,本文的作者捕捉到了这样一 ...
- ICCV2019论文点评:3D Object Detect疏密度点云三维目标检测
ICCV2019论文点评:3D Object Detect疏密度点云三维目标检测 STD: Sparse-to-Dense 3D Object Detector for Point Cloud 论文链 ...
- Adversarial Examples for Semantic Segmentation and Object Detection 阅读笔记
Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, ...
随机推荐
- 【HBase】二、HBase实现原理及系统架构
整个Hadoop生态中大量使用了master-slave的主从式架构,如同HDFS中的namenode和datanode,MapReduce中的JobTracker和TaskTracker,YAR ...
- Python基础语法之字典
1 字典基础 1.1 字典是无序的对象的集合,通过键来存取,字典的键只能是不可变类型. 1.3 字典的长度可变,异构,任意嵌套. 1.2 python中不可变数据类型包括:数值类型,字符串和元组. 2 ...
- Linux 系统安装 python
Centos 7 Centos 7 安装 python3 (不要卸载python2 因为yum 要用) https://phoenixnap.com/kb/how-to-install-python- ...
- 深入理解java:2.3.2. 并发编程concurrent包 之重入锁/读写锁/条件锁
重入锁 Java中的重入锁(即ReentrantLock) 与JVM内置锁(即synchronized)一样,是一种排它锁. ReentrantLock提供了多样化的同步,比如有时间限制的同步(定 ...
- python+selenium模拟键盘输入
from selenium.webdriver.common.keys import Keys #键盘导入类 --------------------------------------------- ...
- mysql定时任务/mysql作业
转自:https://www.jb51.net/article/138569.htm 详细参考:https://www.cnblogs.com/qlqwjy/p/7954175.html(事件& ...
- JSP总结(jsp/EL表达式/核心标签)
1.概念 jsp,即java Server Pages,java服务器页面. 2.简单介绍 小示例 <%@ page language="java" contentType= ...
- 关于Pulsar与Kafka
在本系列的Pulsar和Kafka比较文章中,我将引导您完成我认为重要的几个领域,并且对于人们选择强大,高可用性,高性能的流式消息传递平台至关重要.消息传递模型(Messaging model)是用户 ...
- 用nopcomerce3.8版本的同行注意了,前2天发布3.8正式版后,作者收到一些BuG,作者修复后重新提供了一个源代码包下载.
用nopcomerce3.8版本的同行注意了,前2天发布3.8正式版后,作者收到一些BuG,作者修复后重新提供了一个源代码包下载地址,不是github上的那个链接.去作者官网论坛我那个链接地址,或关注 ...
- Codeforces 1262D Optimal Subsequences(BIT+二分)
首先比较容易想到肯定是前k大的元素,那么我们可以先对其进行sort,如果数值一样返回下标小的(见题意),接下里处理的时候我们发现需要将一个元素下标插入到有序序列并且需要访问第几个元素是什么,那么我们可 ...