numpy-查找操作大全
本文记录日常工作中遇到的查找操作,持续更新。
注意:输入必须是 数组,不能是 list
极值
min,max 返回极值
argmin(a, axis=None, out=None), 返回极值所在的位置;不带 axis,先拉直,再找极值;带 axis,找某个维度的极值
b = np.array([[1, 2, 3, 5], [4, 6, 2, 6]])
print(np.max(b)) # 返回最大值 6
print(np.min(b)) # 返回最小值 1
print(np.argmax(b)) # 返回第一个最大值的位置 5
print(np.argmin(b)) # 返回第一个最小值的位置 0 print(np.argmin(b, axis=1)) # [0 2]
NaN值
nan 值由多种表达形式,如 None,np.nan,np.NaN等
isnan,输入可以是 一维,也可以是 二维,返回布尔索引
x = np.array(range(10), dtype=np.float)
y = np.array(range(10,20))
print(x.shape) # (10,)
print(x) # [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
print(y) # [10 11 12 13 14 15 16 17 18 19]
x[3] = None # 插入 nan
x[5] = np.NaN # 插入 nan
print(x) # [ 0. 1. 2. nan 4. nan 6. 7. 8. 9.] # isnan 返回索引
print(np.isnan(x)) # [False False False True False True False False False False]
print(y[np.isnan(x)]) # [13 15]
print(y[~np.isnan(x)]) # [10 11 12 14 16 17 18 19]
如果想返回数值索引,可如下操作
data4 = np.array([1, 3, np.nan, 5]) ## isnan 返回 nan 值的布尔下标
print np.isnan(data4) # [False False True False] ## where 找到 nan 值的数值下标
print np.where(np.isnan(data4)) # (array([2]),)
print np.where(~np.isnan(data4)) # (array([0, 1, 3]),)
注意,nan 值 不能用 where 查找
print(np.where(x != np.NaN)) # (array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),) 这样不行
经常遇到这么一个错误
TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''
错误原因:有异常的数据类型,非 int float
解决方法:转换数据类型,.astype('float')
where 条件
where,返回tuple,第一个值是索引,第二个是空值
1. 输入必须是 数组,不能是 list
2. 输入一般是一维,行向量或者列向量都可以
3. 输入多维,将返回两个索引,行向量或者列向量返回不同
argwhere,直接返回索引,返回为二维数组,列向量
# list 返回错误
data = range(10)
print np.where(data>6) # (array([0]),) # 一维数组
data1 = np.array(range(0, 20, 2))
print np.where(data1>6) # (array([7, 8, 9]),)
print np.where(data1.T>6) # (array([7, 8, 9]),) # 二维数组
data2 = np.array([range(0, 20, 2)])
print np.where(data2>6) # (array([0, 0, 0]), array([7, 8, 9])) # 多行多列
data3 = np.array([range(10), range(10)])
print(data3)
print np.where(data3>6) # (array([0, 0, 0, 1, 1, 1]), array([7, 8, 9, 7, 8, 9]))
print np.where(data3.T>6) # (array([7, 7, 8, 8, 9, 9]), array([0, 1, 0, 1, 0, 1])) ## argwhere 直接返回索引
print np.argwhere(data1>6)
# [[4]
# [5]
# [6]
# [7]
# [8]
# [9]]
print np.argwhere(data1.T>6)
# [[4]
# [5]
# [6]
# [7]
# [8]
# [9]]
where 也可输入多个条件
# 求公共部分
print np.intersect1d([1, 4, 3], [3, 4, 5]) # [3 4] # 多个条件
data2 = np.array([1,5, 11,16,20])
print np.where(data2>10) # (array([2, 3, 4]),) print np.where((data2>10) & (data2<18)) # (array([2, 3]),)
print np.where(np.logical_and(data2>10, data2<18)) # (array([2, 3]),)
print np.intersect1d(np.where(data2>10)[0], np.where(data2<18)[0]) # [2 3]
extract 条件
extract(condition, arr),按某条件查找,返回元素
print(np.extract(np.isnan(x), x)) # [nan nan]
print(np.extract(np.isnan(x), y)) # [13 15]
print(np.extract(x>8, x)) # [9.]
非0元素
nonzero,返回tuple,第一个值是索引,第二个是空值
x = [1, 0, 3, 0]
print(np.nonzero(x)) # (array([0, 2]),)
未完待续...
numpy-查找操作大全的更多相关文章
- python中numpy矩阵运算操作大全(非常全)!
python中numpy矩阵运算操作大全(非常全) //2019.07.10晚python矩阵运算大全1.矩阵的输出形式:对于任何一个矩阵,python输出的模板是:import numpy as n ...
- PHP数组操作大全
<?php /** * File: phpstudy : array_test.php * Created by PhpStorm. * User: IhMfLy Pheonix@jtv-070 ...
- SQL语句操作大全
SQL语句操作大全 本文分为以下六个部分: 基础部分 提升部分 技巧部分 数据开发–经典部分 SQL Server基本函数部分 常识部分 一.基础 1.说明:创建数据库CREATE DATABAS ...
- MATLAB命令大全和矩阵操作大全
转载自: http://blog.csdn.net/dengjianqiang2011/article/details/8753807 MATLAB矩阵操作大全 一.矩阵的表示在MATLAB中创建矩阵 ...
- numpy 基础操作
Numpy 基础操作¶ 以numpy的基本数据例子来学习numpy基本数据处理方法 主要内容有: 创建数组 数组维度转换 数据选区和切片 数组数据计算 随机数 数据合并 数据统计计算 In [1]: ...
- SQLite3命令操作大全
SQLite3命令操作大全 SQLite库包含一个名字叫做sqlite3的命令行,它可以让用户手工输入并执行面向SQLite数据库的SQL命令.本文档提供一个样使用sqlite3的简要说明. 一.ql ...
- Numpy 数组操作
Numpy 数组操作 Numpy 中包含了一些函数用于处理数组,大概可分为以下几类: 修改数组形状 翻转数组 修改数组维度 连接数组 分割数组 数组元素的添加与删除 修改数组形状 函数 描述 resh ...
- MATLAB矩阵操作大全
转载自:http://blog.csdn.net/dengjianqiang2011/article/details/8753807 MATLAB矩阵操作大全 一.矩阵的表示 在MATLAB中创建矩阵 ...
- 二叉排序树(BST)创建,删除,查找操作
binary search tree,中文翻译为二叉搜索树.二叉查找树或者二叉排序树.简称为BST 一:二叉搜索树的定义 他的定义与树的定义是类似的,也是一个递归的定义: 1.要么是一棵空树 2.如果 ...
- Delphi Excel 操作大全
Delphi Excel 操作大全 (一) 使用动态创建的方法首先创建 Excel 对象,使用ComObj:var ExcelApp: Variant;ExcelApp := CreateOleObj ...
随机推荐
- UVA 11178 Morley's Theorem 计算几何模板
题意:训练指南259页 #include <iostream> #include <cstdio> #include <cstring> #include < ...
- stat:查看文件时间参数
Linux 系统中,每个文件主要拥有 3 个时间参数,分别是文件的访问时间.数据修改时间以及状态修改时间: 访问时间(Access Time,简称 atime):只要文件的内容被读取,访问时间就会更新 ...
- Android 属性动画监听事件与一个菜单的例子
简单监听事件 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 3 ...
- confluence -- 命令行备份还原
备份:confluence每日凌晨2:00都在 /data/atlassian/application-data/confluence/backups/ 下生成备份包,其中包括文档,附件,用户 还原: ...
- POJ 1430 Binary Stirling Numbers (第二类斯特林数、组合计数)
题目链接 http://poj.org/problem?id=1430 题解 qaq写了道水题-- 在模\(2\)意义下重写一下第二类Stirling数的递推式: \[S(n,m)=S(n-1,m-1 ...
- DIY Arduino 方向盘
之前的项目中使用Arduino做UE4的输入设备时候需要用到UE4Duino这个插件,以字符串的形式从Arduino中组装信息并发送到串口,使用UE4Duino进行解析,过程比较麻烦. 最近发现的一个 ...
- [NLP] The Annotated Transformer 代码修正
1. RuntimeError: "exp" not implemented for 'torch.LongTensor' class PositionalEncoding(nn. ...
- JS框架_(JQuery.js)Tooltip弹出式按钮插件
百度云盘 传送门 密码:7eh5 弹出式按钮效果 <!DOCTYPE html> <html > <head> <meta charset="UTF ...
- Mac安装ipython与jupyter
Python从Python发展而来,更倾向于科学计算.互联网数据分析更喜欢用. 首先切换root用户: sudo su - pip3自动安装ipython yuchaodeMacBook-Pro:~ ...
- Struts1与Struts2区别?
(1)Struts1执行过程: <1>Web容器启动的时候ActionServlet被初始化,加载struts-config.xml配置文件. <2>浏览器发送请求到Actio ...