Codeforces893F_Subtree Minimum Query
题意
给定一棵树和根,每个点有点权,强制在线询问\(x\)子树里离\(x\)距离不超过\(k\)的最小点权。
分析
- 权值线段树合并的套路题,dfs,以深度作为下标,点权作为值,对每个点建立一颗权值线段树,然后回溯的时候合并到父节点的线段树上。
- 合并时维护最小值,查询时也是查询区间最小值。
- 内存给得多的情况下数组往死里开,不要白白送一发RE。
代码
#include <bits/stdc++.h>
using namespace std;
const int N=6e5+50;
const int INF=0x3f3f3f3f;
vector<int> g[N];
int a[N],n,rt,u,v,lst,q,x,k;
int mn[N*30],ls[N*30],rs[N*30],tot,dep[N],tr[N];
void insert(int &rt,int l,int r,int p,int v){
if(!rt){
rt=++tot;
}
mn[rt]=v;
int mid=(l+r)/2;
if(l<r){
if(p<=mid){
insert(ls[rt],l,mid,p,v);
}else{
insert(rs[rt],mid+1,r,p,v);
}
}
}
int merge(int a,int b){
if(!a || !b){
return a+b;
}
int rt=++tot;
mn[rt]=min(mn[a],mn[b]);
ls[rt]=merge(ls[a],ls[b]);
rs[rt]=merge(rs[a],rs[b]);
return rt;
}
int query(int rt,int l,int r,int ql,int qr){
if(!rt){
return INF;
}
if(ql<=l && qr>=r){
return mn[rt];
}
int ans=INF;
int mid=(l+r)/2;
if(ql<=mid){
ans=min(ans,query(ls[rt],l,mid,ql,qr));
}
if(qr>mid){
ans=min(ans,query(rs[rt],mid+1,r,ql,qr));
}
return ans;
}
void debug(int rt,int l,int r){
printf("%d %d %d\n",l,r,mn[rt]);
if(l==r){
return;
}
int mid=(l+r)/2;
debug(ls[rt],l,mid);
debug(rs[rt],mid+1,r);
}
void dfs(int u,int f){
dep[u]=dep[f]+1;
insert(tr[u],1,n,dep[u],a[u]);
int siz=g[u].size();
for(int i=0;i<siz;i++){
int v=g[u][i];
if(v==f){
continue;
}
dfs(v,u);
tr[u]=merge(tr[u],tr[v]);
}
}
int solve(int x,int k){
return query(tr[x],1,n,dep[x],dep[x]+k);
}
int main(){
// freopen("in.txt","r",stdin);
scanf("%d%d",&n,&rt);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
for(int i=1;i<n;i++){
scanf("%d%d",&u,&v);
g[u].push_back(v);
g[v].push_back(u);
}
dfs(rt,0);
scanf("%d",&q);
while(q--){
scanf("%d%d",&x,&k);
x=(x+lst)%n+1;
k=(k+lst)%n;
printf("%d\n",lst=solve(x,k));
}
return 0;
}
Codeforces893F_Subtree Minimum Query的更多相关文章
- AOJ DSL_2_A Range Minimum Query (RMQ)
Range Minimum Query (RMQ) Write a program which manipulates a sequence A = {a0,a1,...,an−1} with the ...
- Range Minimum Query and Lowest Common Ancestor
作者:danielp 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAnc ...
- Codeforces 893F - Subtree Minimum Query
893F - Subtree Minimum Query 题意 给出一棵树,每次询问 \(x\) \(k\),求以 \(x\) 为根结点的子树中的结点到结点 \(x\) 的距离小于等于 \(k\) 的 ...
- [cf contest 893(edu round 33)] F - Subtree Minimum Query
[cf contest 893(edu round 33)] F - Subtree Minimum Query time limit per test 6 seconds memory limit ...
- CF893F Subtree Minimum Query 解题报告
CF893F Subtree Minimum Query 输入输出格式 输入格式: The first line contains two integers \(n\) and \(r\) ( \(1 ...
- [CF893F] Subtree Minimum Query
Description: 给定一棵树,每次询问某点子树中到其不超过k的所有点的最小点权 强制在线 Hint: \(n,m\le 10^5\) Solution: 看到题目第一反应是以深度为下标,dfs ...
- Educational Codeforces Round 33 (Rated for Div. 2) F. Subtree Minimum Query(主席树合并)
题意 给定一棵 \(n\) 个点的带点权树,以 \(1\) 为根, \(m\) 次询问,每次询问给出两个值 \(p, k\) ,求以下值: \(p\) 的子树中距离 \(p \le k\) 的所有点权 ...
- Subtree Minimum Query CodeForces - 893F (线段树合并+线段树动态开点)
题目链接:https://cn.vjudge.net/problem/CodeForces-893F 题目大意:给你n个点,每一个点有权值,然后这n个点会构成一棵树,边权为1.然后有q次询问,每一次询 ...
- 2019.01.19 codeforces893F.Subtree Minimum Query(线段树合并)
传送门 线段树合并菜题. 题意简述:给一棵带点权的有根树,多次询问某个点ppp子树内距离ppp不超过kkk的点的点权最小值,强制在线. 思路: 当然可以用dfsdfsdfs序+主席树水过去. 然而线段 ...
随机推荐
- JavaScript插件制作-tab选项卡
JavaScript插件制作练习-鼠标划过选项卡切换图片 <!DOCTYPE html> <html> <head> <meta charset=" ...
- php的while函数
PHP while 循环 PHP Switch PHP For 循环 PHP while 循环在指定条件为 true 时执行代码块. PHP 循环 在您编写代码时,经常需要反复运行同一代码块.我们可以 ...
- 「POI 2010」Bridges
题目链接 戳我 \(Solution\) 看到"最大值最小",就知道应该要二分 二分之后,对于每个\(mid\),只要计算小于\(mid\)的边,然后在剩下的图中判断有无欧拉回路 ...
- linux安装提示权限 不足 ,原来是锁了
lsattr 查看 然后就是chattr -i /etc -i 是解锁 +i 就是上锁
- C++入门经典-例3.12-使用if-else语句实现根据输入的字符输出字符串
1:代码如下: // 3.12.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> usin ...
- leetcode 94二叉树的中序遍历
递归算法C++代码: /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; ...
- 使用 Supervsior 守护进程
概述 一般来说,在终端开启的服务,如果退出终端的话,就会自动关闭服务.这个时候需要守护这个服务的进程. Supervisor 是一个用 Python 写的进程管理工具,可以很方便的用在 UNIX-li ...
- idea 编译 netty 源码
git clone netty 源码,运行 example 报错 全量 mvn compile -DskipTests=true 后,依然报错 手动在 netty-buffer 模块中添加对应的依赖 ...
- 双屏显示——NW.js
1.利用w10中的双屏显示设置(扩展模式) 2.Code for second window: var gui = require('nw.gui'); gui.Screen.Init(); win ...
- #Java学习之路——基础阶段二(第十二篇)
我的学习阶段是跟着CZBK黑马的双源课程,学习目标以及博客是为了审查自己的学习情况,毕竟看一遍,敲一遍,和自己归纳总结一遍有着很大的区别,在此期间我会参杂Java疯狂讲义(第四版)里面的内容. 前言: ...