二叉树——遍历篇(递归/非递归,C++)
二叉树——遍历篇
二叉树很多算法题都与其遍历相关,笔者经过大量学习、思考,整理总结写下二叉树的遍历篇,涵盖递归和非递归实现。
1、二叉树数据结构及访问函数
#include <stdio.h>
#include <iostream>
#include <stack>
using namespace std;
struct BTNode
{
int value;
struct BTNode *left, *right;
BTNode(int value_) :value(value_),left(NULL),right(NULL){};
};
//访问函数:可根据实际进行修改
void visit(BTNode* node)
{
cout << node->value << " ";
}
2、二叉树的遍历——深度优先遍历(DFS)(先序、中序、后序)
2.1、具体遍历顺序
先序遍历:访问根节点、先序遍历左孩子、先序遍历右孩子 (根、左、右)
中序遍历:中序遍历左孩子、访问根节点、中序遍历右孩子 (左、根、右)
后序遍历:后序遍历左孩子、后序遍历右孩子、访问根节点 (左、右、根)
2.2、递归遍历
/**
* 先序遍历二叉树
*/
void PreOrder(BTNode* root)
{
if (root)
{
visit(root);
PreOrder(root->left);
PreOrder(root->right);
}
}
/**
* 中序遍历二叉树
*/
void InOrder(BTNode* root)
{
if (root)
{
InOrder(root->left);
visit(root);
InOrder(root->right);
}
}
/**
* 后序遍历二叉树
*/
void PostOrder(BTNode* root)
{
if (root)
{
PostOrder(root->left);
PostOrder(root->right);
visit(root);
}
}
2.3、非递归遍历——借助栈
- 借助栈,可以实现非递归遍历。
- 在这里三种非递归遍历都总结和介绍一种算法思路,其栈中保存的节点可以用于路径搜索类的题目,即保存着从根节点到当前访问节点最短路径的所有节点信息,以*标记。
- 介绍仅用于遍历访问的简单思路,栈中信息难以应用于搜索路径类的题目。
2.31 先序非递归遍历
* PreOrder_1a
算法过程:
由先序遍历过程可知,先序遍历的开始节点是根节点,然后用指针p 指向当前要处理的节点,沿着二叉树的左下方逐一访问,并将它们一一进栈,直至栈顶节点为最左下节点,指针p为空。此时面临两种情况。(1)对栈顶节点的右子树访问(如果有的话,且未被访问),对右子树进行同样的处理;(2)若无右子树,则用指针last记录最后一个访问的节点,指向栈顶节点,弹栈。如此重复操作,直至栈空为止。
void PreOrder_1a(BTNode *root)
{
if (NULL == root) return;
stack<BTNode*> stack;
BTNode *p = root;
BTNode *last = NULL;
do {
while (p)
{
visit(p);
stack.push(p);
p = p->left;
}
//此时p = NULL,栈顶节点为左子树最左节点
if (!stack.empty())
{
BTNode *t = stack.top();
if (t->right != NULL && t->right != last)
{
p = t->right;
}
else
{//若无右子树,则指针P仍为空,则不断弹栈(沿着双亲方向)寻找有未被访问的右子树的节点
last = t;
stack.pop();
}
}
} while (!stack.empty());
}
* PreOrder_1b
算法过程:此算法与PreOrder_1a有异曲同工之处,巧妙之处在于对上述两种情况的处理。指针p记录当前栈顶结点的前一个已访问的结点。若无右子树、或者右子树已被访问,则用指针p记录当前栈顶节点,弹栈,不断沿着双亲方向寻找有未访问右子树的节点,找到即退出循环,否则直至栈空。当栈顶节点的右孩子是p时,则将cur指向右孩子,设置flag =0 ,退出当前搜索循环(不断弹栈,搜索有右节点且未被访问的祖先节点),然后对右子树进行同样的处理。如此反复操作,直至栈空为止。
void PreOrder_1b(BTNode *root)
{
if (NULL == root) return;
stack<BTNode*>stack;
int flag;
BTNode *cur = root,*p;
do{
while (cur)
{
visit(cur);
stack.push(cur);
cur = cur->left;
}
//执行到此处时,栈顶元素没有左孩子或左子树均已访问过
p = NULL; //p指向栈顶结点的前一个已访问的结点
flag = 1; //表示*cur的左孩子已访问或者为空
while (!stack.empty() && flag == 1)
{
cur = stack.top();
if (cur->right == p) //表示右孩子结点为空或者已经访问完右孩子结点
{
stack.pop();
p = cur; //p指向刚访问过的结点
}
else
{
cur = cur->right; //cur指向右孩子结点
flag = 0; //设置未被访问的标记
}
}
} while (!stack.empty());
}
PreOrder_2a && PreOrder_2b
PreOrder_2a 和 PreOrder_2b 算法思路大体相同,PreOrder_2a 实现比较简洁
算法过程:
用指针p指向当前要处理的节点,沿着左下方向逐一访问并压栈,直至指针P为空,栈顶节点为最左下节点。然后p指向栈顶节点的右节点(不管是否空);若右节点为空,则继续弹栈。若右节点非空,则按上述同样处理右节点。如此重复操作直至栈空为止。
缺陷:PreOrder_2 当访问栈顶节点的右节点时,会丢失当前栈顶节点信息,导致从根节点到当前栈顶节点的右节点路径不完整。
优点:算法思路清晰易懂,逻辑简单。
void PreOrder_2a(BTNode *root)
{
if (NULL == root) return;
BTNode *p = root;
stack<BTNode*> stack;
while (p || !stack.empty())
{
if (p)
{
visit(p);
stack.push(p);
p = p->left;
}
else
{
BTNode *top = stack.top();
p = top->right;
stack.pop();
}
}
}
void PreOrder_2b(BTNode *root)
{
if (NULL == root) return;
BTNode *p = root;
stack<BTNode*> stack;
while (!stack.empty() ||p)
{
while (p)
{
visit(p);
stack.push(p);
p = p->left;
}
if (!stack.empty())
{
BTNode *top = stack.top();
p = top->right;
stack.pop();
}
}
}
PreOrder_3
算法过程:
用指针p指向当前要处理的节点。先把根节点压栈,栈非空时进入循环,出栈栈顶节点并访问,然后按照先序遍历先左后右的逆过程把当前节点的右节点压栈(如果有的话),再把左节点压栈(如果有的话)。如此重复操作,直至栈空为止。
特点:栈顶节点保存的是先序遍历下一个要访问的节点,栈保存的所有节点不是根到要访问节点的路径。
void PreOrder_3(BTNode *root)
{
if (NULL == root) return;
BTNode *p = root;
stack<BTNode *> stack;
stack.push(p);
while (!stack.empty())
{
p = stack.top();
stack.pop();
visit(p);
if (p->right)
stack.push(p->right);
if (p->left)
stack.push(p->left);
}
}
2.32 中序非递归遍历
中序遍历非递归算法要把握访问栈顶节点的时机。
* InOrder_1
算法过程:
用指针cur指向当前要处理的节点。先扫描(并非访问)根节点的所有左节点并将它们一一进栈,直至栈顶节点为最左下节点,指针cur为空。
此时主要分两种情况。(1)栈顶节点的左节点为空或者左节点已访问,访问栈顶节点(访问位置很重要!),若有右节点则将cur指向右节点,退出当前while循环,对右节点进行上述同样的操作,若无右节点则用指针p记录站顶节点并弹栈;(2)站顶节点的右节点为空或已访问,用指针p记录站顶节点并弹栈。
内部第二个while循环可称为访问搜索循环,在栈顶节点的左节点为空或者左节点已访问的情况下,访问栈顶节点,若有右节点,则退出循环,否则不断弹栈。
如此重复操作,直至栈空为止。
void InOrder_1(BTNode *root)
{
if (NULL == root) return;
stack<BTNode *>stack;
BTNode *cur = root,*p = NULL;
int flag = 1;
do{
while (cur){
stack.push(cur);
cur = cur->left;
}
//执行到此处时,栈顶元素没有左孩子或左子树均已访问过
p = NULL; //p指向栈顶结点的前一个已访问的结点
flag = 1; //表示*cur的左孩子已访问或者为空
while (!stack.empty() && flag)
{
cur = stack.top();
if (cur->left == p) //左节点为空 或者左节点已访问
{
visit(cur); //访问当前栈顶节点
if (cur->right) //若有右节点 当前节点指向右节点,并退出当前循环,进入上面的压栈循环
{
cur = cur->right;
flag = 0; //flag = 0 标记右节点的左子树未访问
}
else //当前节点没有右节点,P记录访问完的当前节点,弹栈
{
p = cur;
stack.pop();
}
}
else // 此时 cur->right == P 即访问完右子树 ,P记录访问完的当前节点,弹栈
{
p = cur;
stack.pop();
}
}
} while (!stack.empty());
}
InOrder_2a && InOrder_2b
算法过程:
用指针p指向当前要处理的节点。先扫描(并非访问)根节点的所有左节点并将它们一一进栈,当无左节点时表示栈顶节点无左子树,然后出栈这个节点,并访问它,将p指向刚出栈节点的右孩子,对右孩子进行同样的处理。如此重复操作,直至栈空为止。
需要注意的是:当节点*p的所有左下节点入栈后,这时的栈顶节点要么没有左子树,要么其左子树已访问,就可以访问栈顶节点了!
InOrder_2a 、 InOrder_2b 与 PreOrder_1a 、PreOrder_1b 代码基本相同,唯一不同的是访问节点的时机,把握好可方便理解和记忆。
void InOrder_2a(BTNode *root)
{
if (NULL == root) return;
BTNode *p = root;
stack<BTNode *>stack;
while (p || !stack.empty())
{
while (p)
{
stack.push(p);
p = p->left;
}
if (!stack.empty())
{
p = stack.top();
visit(p);
stack.pop();
}
}
}
void InOrder_2b(BTNode *root)
{
if (NULL == root) return;
stack<BTNode *>stack;
BTNode *p = root;
while (p || !stack.empty())
{
while (p)
{
stack.push(p);
p = p->left;
}
if (!stack.empty())
{
p = stack.top();
visit(p);
p = p->right;
stack.pop();
}
}
}
2.33 后序非递归遍历
*PostOrder_1
算法过程:
用指针cur指向当前要处理的节点。先扫描(并非访问)根节点的所有左节点并将它们一一进栈,直至栈顶节点为最左下节点,指针cur为空。此时有两种情况。(1)栈顶节点的右节点为空或已访问,访问当前栈顶节点(访问时机很重要!),用指针p保存刚刚访问过的节点(初值为NULL),弹栈;(2)栈顶节点有未被访问的右节点,设置flag,退出当前访问搜索循环。如此重复处理,直至栈空为止。
void PostOrder_1(BTNode *root)
{
if (NULL == root) return;
stack<BTNode*>stack;
int flag;
BTNode *cur = root, *p;
do{
while (cur)
{
stack.push(cur);
cur = cur->left;
}
//执行到此处时,栈顶元素没有左孩子或左子树均已访问过
p = NULL; //p指向栈顶结点的前一个已访问的结点
flag = 1; //表示*cur的左孩子已访问或者为空
while (!stack.empty() && flag == 1)
{
cur = stack.top();
if (cur->right == p)
{//表示右孩子结点为空,或者已经访问cur的右子树(p必定是后序遍历cur的右子树最后一个访问节点)
visit(cur);
p = cur; //p指向刚访问过的结点
stack.pop();
}
else
{
cur = cur->right; //cur指向右孩子结点
flag = 0; //表示*cur的左孩子尚未访问过
}
}
} while (!stack.empty());
}
PostOrder_2
算法过程:
先把根节点压栈,用指针p记录上一个被访问的节点。在栈为空时进入循环,取出栈顶节点。
此时有两种情况:
(1)访问当前节点,注意把握访问的时机,如果当前节点是叶子节点,访问当前节点;如果上一个访问的节点是当前节点的左节点(说明无右节点),访问当前节点;如果上一个访问的节点是当前节点的右节点(说明左右节点都有),访问当前节点;指针p记录当前访问的节点,弹栈。 所以,只有当前节点是叶子节点,或者上一个访问的节点是当前节点的左节点(无右) 或右节点(左右都有) ,才可以访问当前节点。
(2)压栈。 后序遍历顺序为 左、右、根,按照逆序,先把右压栈,再把左压栈(如果有的话)。
如此重复操作,直至栈空为止。
void PostOrder_2(BTNode* root)
{
if (NULL == root) return;
BTNode *cur = root, *p=NULL;
stack<BTNode*> stack;
stack.push(root);
while (!stack.empty())
{
cur = stack.top();
if (cur->left == NULL && cur->right == NULL || (p!= NULL && (cur->left==p || cur->right == p)))
{
visit(cur);
stack.pop();
p = cur;
}
else
{
if (cur->right)
stack.push(cur->right);
if (cur->left)
stack.push(cur->left);
}
}
}
3、二叉树的遍历——广度优先遍历(BFS)
二叉树的广度优先遍历,就是层次遍历,借助队列实现
在进行层次遍历时,对某一层的节点访问完后,再按照对它们的访问次序对各个节点的左、右孩子顺序访问。这样一层一层进行,先访问的节点其左、右孩子也要先访问,与队列的操作原则比较吻合,且符合广度优先搜索的特点。
算法过程:先将根节点进队,在队不空时循环;从队列中出列一个节点,访问它;若它有左孩子节点,将左孩子节点进队;若它有右孩子节点,将右孩子节点进队。如此重复操作直至队空为止。
void LevelOrder(BTNode *root)
{
if (NULL == root) return;
queue<BTNode*> queue;
queue.push(root);
BTNode* p;
while (!queue.empty())
{
p = queue.front();
queue.pop();
visit(p);
if (p->left)
queue.push(p->left);
if (p->right)
queue.push(p->right);
}
}
原创所有,转载务必注明出处。
二叉树——遍历篇(递归/非递归,C++)的更多相关文章
- 二叉树的先序、中序以及后序遍历(递归 && 非递归)
树节点定义: class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int x) { val = x; } } 递归建立二 ...
- 二叉树的递归,非递归遍历(C++)
二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的.对于二叉树,有前序.中序以及后序三种遍历方法.因为树的定义本身就是递归定义,因此采用递归的方法去实现树的三种遍历不仅容易 ...
- 树的广度优先遍历和深度优先遍历(递归非递归、Java实现)
在编程生活中,我们总会遇见树性结构,这几天刚好需要对树形结构操作,就记录下自己的操作方式以及过程.现在假设有一颗这样树,(是不是二叉树都没关系,原理都是一样的) 1.广度优先遍历 英文缩写为BFS即B ...
- 【数据结构】——搜索二叉树的插入,查找和删除(递归&非递归)
一.搜索二叉树的插入,查找,删除 简单说说搜索二叉树概念: 二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值 若它的右 ...
- Reverse Linked List 递归非递归实现
单链表反转--递归非递归实现 Java接口: ListNode reverseList(ListNode head) 非递归的实现 有2种,参考 头结点插入法 就地反转 递归的实现 1) Divide ...
- Java实现二叉树的创建、递归/非递归遍历
近期复习数据结构中的二叉树的相关问题,在这里整理一下 这里包含: 1.二叉树的先序创建 2.二叉树的递归先序遍历 3.二叉树的非递归先序遍历 4.二叉树的递归中序遍历 5.二叉树的非递归中序遍历 6. ...
- 递归/非递归----python深度遍历二叉树(前序遍历,中序遍历,后序遍历)
递归代码:递归实现很简单 '二叉树结点类' class TreeNode: def __init__(self, x): self.val = x self.left = None self.righ ...
- C++二叉树前中后序遍历(递归&非递归)统一代码格式
统一下二叉树的代码格式,递归和非递归都统一格式,方便记忆管理. 三种递归格式: 前序遍历: void PreOrder(TreeNode* root, vector<int>&pa ...
- 二叉树总结—建树和4种遍历方式(递归&&非递归)
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/u013497151/article/details/27967155 今天总结一下二叉树.要考离散了 ...
随机推荐
- Java的单例模式
单例模式:单例模式确保其一个类只有一个实例,而且自行实例化并向整个系统提供这个实例. 单例模式又分为:懒汉式,饿汉式等; 特点: a.单例只有一个实例. b.必须自己创建自己唯一的实例 c.单例类必须 ...
- Java web轻量级开发面试教程的前言
本文来是从 java web轻量级开发面试教程从摘录的. 为什么要从诸多的Java书籍里选择这本?为什么在当前网络信息量如此大的情况下还要买这本书,而不是自己通过查阅网络资料学习?我已经会开发Java ...
- .NET Core容器化之多容器应用部署@Docker-Compose
1.引言 紧接上篇.NET Core容器化@Docker,这一节我们先来介绍如何使用Nginx来完成.NET Core应用的反向代理,然后再介绍多容器应用的部署问题. 2. Why Need Ngin ...
- 九、 Spring Boot 拦截器
过滤器属于Servlet范畴的API,与spring 没什么关系. Web开发中,我们除了使用 Filter 来过滤请web求外,还可以使用Spring提供的HandlerInterceptor(拦截 ...
- java两种动态代理方式的理解
要理解动态代理,不妨先来看看一个静态代理的例子. 一.静态代理 以一个电商项目的例子来说明问题,比如我定义了一个订单的接口IOrder,其中有一个方法时delivery,代码如下. package c ...
- Zabbix安装之路
这次的教程多半是搬运过来的,但都经过小轩亲自测试与修改了.文章最后将公布原资源地址.此篇算是整合,但又不全是整合. 依旧需求开篇:上头让小轩监控一下服务器的情况,在前几篇也有所提到.于是小轩就到处去找 ...
- Django项目创建02
Django项目创建(ubuntu环境) 1. 创建项目目录,我是在root下创建了一个workspace文件夹:mkdir workspace 然后cd到该目录下 命令:django-adm ...
- 【HTML5】HTML5新布局元素
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- apache故障处理
注意:修改虚拟机主机html路径不需要修改主配置这一行. DocumentRoot "/var/www" 1.Permission denied: [client 10.10.2. ...
- C# VS2010结合SQL Server 2008数据库编程实现方法
SQL Server 数据库在C#编程中经常用到,如何实现在具体项目中数据库和具体应用的结合是我们经常遇到的问题,我们这次主要针对如何使用SQL Server 数据库展开,下面是具体的操作以及简单的代 ...