4530: [Bjoi2014]大融合

拿这题作为lct子树查询的练手。本来以为这会是一个大知识点,结果好像只是一个小技巧?

多维护一个虚边连接着的子树大小即可。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define MN 210010
using namespace std; int p,ca,f;
inline int read(){
p=;ca=getchar();f=;
while(ca<''||ca>'') {if (ca=='-') f=-;ca=getchar();}
while(ca>=''&&ca<='') p=p*+ca-,ca=getchar();
return p*f;
}
struct na{
int y,ne,c,nu;
}b[MN*];
int fa[MN],n,t,x,y,c,num,id[MN],key[MN],ch[MN][],ma[MN],st[MN],Si[MN],si[MN];
bool rt[MN],rev[MN];
inline int max(int a,int b){return a>b?a:b;}
inline void up(int x){si[x]=si[ch[x][]]+si[ch[x][]]+Si[x]+;}
inline void pd(int x){if (rev[x]) swap(ch[x][],ch[x][]),rev[ch[x][]]^=,rev[ch[x][]]^=,rev[x]=;}
inline void rot(int x){
int y=fa[x],kind=ch[y][]==x;
fa[x]=fa[y];
fa[y]=x;
ch[y][kind]=ch[x][!kind];
fa[ch[y][kind]]=y;
ch[x][!kind]=y;
if(rt[y]) rt[y]=,rt[x]=;else ch[fa[x]][ch[fa[x]][]==y]=x;
up(y);up(x);
}
inline void splay(int x){
int i=x,to=;
while (!rt[i]) st[++to]=i,i=fa[i];pd(i);
for (;to;to--) pd(st[to]);
while(!rt[x]){
if (rt[fa[x]]) rot(x);else
if ((ch[fa[fa[x]]][]==fa[x])==(ch[fa[x]][]==x)) rot(fa[x]),rot(x);else rot(x),rot(x);
}
}
inline void acc(int u){
int x=;
while(u){
splay(u);
Si[u]+=si[ch[u][]]-si[x];
rt[ch[u][]]=;rt[ch[u][]=x]=;
up(u);
u=fa[x=u];
}
}
inline void root(int x){acc(x);splay(x);rev[x]^=;}
inline void link(int x,int y){
root(x);acc(y);splay(y);
fa[x]=y;Si[y]+=si[x];
}
inline int qu(int x,int y){
root(x);acc(y);
return (Si[x]+)*(Si[y]+);
}
char ss[];
int main(){
n=read();t=read();
for (int i=;i<=n;i++) rt[i]=si[i]=;
while(t--){
scanf("%s",ss);
x=read();y=read();
if (ss[]=='Q') printf("%d\n",qu(x,y));else link(x,y);
}
}

BZOJ:4530: [Bjoi2014]大融合的更多相关文章

  1. BZOJ.4530.[BJOI2014]大融合(LCT)

    题目链接 BZOJ 洛谷 详见这 很明显题目是要求去掉一条边后两边子树sz[]的乘积. LCT维护的是链的信息,那么子树呢? 我们用s_i[x]来记录轻边连向x的子树的和(记作虚儿子),那么sum[x ...

  2. bzoj 4530 [Bjoi2014]大融合——LCT维护子树信息

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4530 LCT维护子树 siz .设 sm[ ] 表示轻儿子的 siz 和+1(1是自己的si ...

  3. 【刷题】BZOJ 4530 [Bjoi2014]大融合

    Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它 ...

  4. bzoj 4530: [Bjoi2014]大融合【LCT】

    新姿势,一般来讲LCT只能维护splay重边里的数据,而这里要求维护整颗子树的size 多维护一个sq表示当前点轻儿子的size和,si表示包括轻重边的整颗子树的大小 然后需要改sq的地方是link和 ...

  5. 【BZOJ】4530: [Bjoi2014]大融合

    [题意]给定n个点的树,从无到有加边,过程中动态询问当前图某条边两端连通点数的乘积,n<=10^5. [算法]线段树合并+并查集 (||LCT(LCT维护子树信息 LCT维护子树信息(+启发式合 ...

  6. [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并

    [BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...

  7. BZOJ_4530_[Bjoi2014]大融合_LCT

    BZOJ_4530_[Bjoi2014]大融合_LCT Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个 ...

  8. P4219 [BJOI2014]大融合(LCT)

    P4219 [BJOI2014]大融合 对于每个询问$(u,v)$所求的是 ($u$的虚边子树大小+1)*($v$的虚边子树大小+1) 于是我们再开个$si[i]$数组表示$i$的虚边子树大小,维护一 ...

  9. 洛谷 P4219 [BJOI2014]大融合 解题报告

    P4219 [BJOI2014]大融合 题目描述 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的 ...

随机推荐

  1. xml文件解析(使用解析器)

    一.Xml解析,解析xml并封装到list中的javabean中 OM是用与平台和语言无关的方式表示XML文档的官方W3C标准.DOM是以层次结构组织的节点或信息片断的集合.这个层次结构允许开发人员在 ...

  2. Socket相关概念

    lsocket的英文原义是“孔”或“插座”.作为进程通信机制,取后一种意思.通常也称作“套接字”,用于描述IP地址和端口,是一个通信链的句柄.(其实就是两个程序通信用的.) lsocket非常类似于电 ...

  3. windows 下的python 安装pycrypto

    一般在官方网站下载pycrypto: https://www.dlitz.net/software/pycrypto/   然后使用命令就可以安装成功了: python setup.py build  ...

  4. JavaScript调试技巧

    熟悉工具可以让工具在工作中发挥出更大的作用.尽管江湖传言 JavaScript 很难调试,但如果你掌握了几个技巧,就能用很少的时间来解决错误和bug. 文中已经列出了14个你可能不知道的调试技巧,但是 ...

  5. ASP.NET Core使用静态文件、目录游览与MIME类型管理

    前言 今天我们来了解了解ASP.NET Core中的静态文件的处理方式. 以前我们寄宿在IIS中的时候,很多静态文件的过滤 和相关的安全措施 都已经帮我们处理好了. ASP.NET Core则不同,因 ...

  6. shiro Filter--拦截器

    一 shiro自带的filter:下面主要叙述顺序是 NameableFilter->OncePerRequestFilter->AdviceFilter->PathMatching ...

  7. 妙味课堂:JavaScript初级--第12课:json与数组

    1.json数据格式及json语法 <!DOCTYPE html> <html lang="en"> <head> <meta chars ...

  8. Asp.net IIS Express 无法启动 解决办法

    http://www.mamicode.com/info-detail-1893424.html 一 .其他项目都可以,就这么一个不行 用记事本或者其他什么文本编辑器,打开项目的.csproj文件,定 ...

  9. spring项目读取配置文件

    Spring项目在运用中读取配置文件有两种方式: 通过项目的配置文件读取 在spring-context.xml里面加入以下代码 在运用到的类里面加入 @Value("#{configPro ...

  10. Python day02 三元运算

     type  查看数据类型.2 **32  :2的32次方 .浮点的表示类型是小数,但是小数不仅仅包括浮点 浮点数用来处理实数,即带有小数的数字 三元运算:  result = 值1 if 条件 el ...