4530: [Bjoi2014]大融合

拿这题作为lct子树查询的练手。本来以为这会是一个大知识点,结果好像只是一个小技巧?

多维护一个虚边连接着的子树大小即可。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define MN 210010
using namespace std; int p,ca,f;
inline int read(){
p=;ca=getchar();f=;
while(ca<''||ca>'') {if (ca=='-') f=-;ca=getchar();}
while(ca>=''&&ca<='') p=p*+ca-,ca=getchar();
return p*f;
}
struct na{
int y,ne,c,nu;
}b[MN*];
int fa[MN],n,t,x,y,c,num,id[MN],key[MN],ch[MN][],ma[MN],st[MN],Si[MN],si[MN];
bool rt[MN],rev[MN];
inline int max(int a,int b){return a>b?a:b;}
inline void up(int x){si[x]=si[ch[x][]]+si[ch[x][]]+Si[x]+;}
inline void pd(int x){if (rev[x]) swap(ch[x][],ch[x][]),rev[ch[x][]]^=,rev[ch[x][]]^=,rev[x]=;}
inline void rot(int x){
int y=fa[x],kind=ch[y][]==x;
fa[x]=fa[y];
fa[y]=x;
ch[y][kind]=ch[x][!kind];
fa[ch[y][kind]]=y;
ch[x][!kind]=y;
if(rt[y]) rt[y]=,rt[x]=;else ch[fa[x]][ch[fa[x]][]==y]=x;
up(y);up(x);
}
inline void splay(int x){
int i=x,to=;
while (!rt[i]) st[++to]=i,i=fa[i];pd(i);
for (;to;to--) pd(st[to]);
while(!rt[x]){
if (rt[fa[x]]) rot(x);else
if ((ch[fa[fa[x]]][]==fa[x])==(ch[fa[x]][]==x)) rot(fa[x]),rot(x);else rot(x),rot(x);
}
}
inline void acc(int u){
int x=;
while(u){
splay(u);
Si[u]+=si[ch[u][]]-si[x];
rt[ch[u][]]=;rt[ch[u][]=x]=;
up(u);
u=fa[x=u];
}
}
inline void root(int x){acc(x);splay(x);rev[x]^=;}
inline void link(int x,int y){
root(x);acc(y);splay(y);
fa[x]=y;Si[y]+=si[x];
}
inline int qu(int x,int y){
root(x);acc(y);
return (Si[x]+)*(Si[y]+);
}
char ss[];
int main(){
n=read();t=read();
for (int i=;i<=n;i++) rt[i]=si[i]=;
while(t--){
scanf("%s",ss);
x=read();y=read();
if (ss[]=='Q') printf("%d\n",qu(x,y));else link(x,y);
}
}

BZOJ:4530: [Bjoi2014]大融合的更多相关文章

  1. BZOJ.4530.[BJOI2014]大融合(LCT)

    题目链接 BZOJ 洛谷 详见这 很明显题目是要求去掉一条边后两边子树sz[]的乘积. LCT维护的是链的信息,那么子树呢? 我们用s_i[x]来记录轻边连向x的子树的和(记作虚儿子),那么sum[x ...

  2. bzoj 4530 [Bjoi2014]大融合——LCT维护子树信息

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4530 LCT维护子树 siz .设 sm[ ] 表示轻儿子的 siz 和+1(1是自己的si ...

  3. 【刷题】BZOJ 4530 [Bjoi2014]大融合

    Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它 ...

  4. bzoj 4530: [Bjoi2014]大融合【LCT】

    新姿势,一般来讲LCT只能维护splay重边里的数据,而这里要求维护整颗子树的size 多维护一个sq表示当前点轻儿子的size和,si表示包括轻重边的整颗子树的大小 然后需要改sq的地方是link和 ...

  5. 【BZOJ】4530: [Bjoi2014]大融合

    [题意]给定n个点的树,从无到有加边,过程中动态询问当前图某条边两端连通点数的乘积,n<=10^5. [算法]线段树合并+并查集 (||LCT(LCT维护子树信息 LCT维护子树信息(+启发式合 ...

  6. [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并

    [BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...

  7. BZOJ_4530_[Bjoi2014]大融合_LCT

    BZOJ_4530_[Bjoi2014]大融合_LCT Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个 ...

  8. P4219 [BJOI2014]大融合(LCT)

    P4219 [BJOI2014]大融合 对于每个询问$(u,v)$所求的是 ($u$的虚边子树大小+1)*($v$的虚边子树大小+1) 于是我们再开个$si[i]$数组表示$i$的虚边子树大小,维护一 ...

  9. 洛谷 P4219 [BJOI2014]大融合 解题报告

    P4219 [BJOI2014]大融合 题目描述 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的 ...

随机推荐

  1. Python 爬虫实战(一):使用 requests 和 BeautifulSoup

    Python 基础 我之前写的<Python 3 极简教程.pdf>,适合有点编程基础的快速入门,通过该系列文章学习,能够独立完成接口的编写,写写小东西没问题. requests requ ...

  2. MySQL操作时间的函数集

    求两个Timestamp之间的秒差值: select TIMESTAMPDIFF(SECOND,TIMESTAMP("2017-03-01 07:58:20"),timestamp ...

  3. C语言中一些不被熟知的特性

    designated initializers(c99) C99允许你对结构体中指定的变量初始化,如 struct Foo { int x; int y; int z; }; }; 指定初始化也可适用 ...

  4. akka-stream与actor系统集成以及如何处理随之而来的背压问题

    这几天上海快下了五天的雨☔️☔️☔️☔️,淅淅沥沥,郁郁沉沉.     一共存在四个api: Source.actorRef,返回actorRef,该actorRef接收到的消息,将被下游消费者所消费 ...

  5. 仿知乎app登录界面(Material Design设计框架拿来就用的TexnInputLayout)

    在我脑子里还没有Material Design这种概念,就我个人而言,PC端应用扁平化设计必须成为首选,手当其冲的两款即时通讯旺旺和QQ早就完成UI扁平化的更新,然而客户端扁平化的设计本身就存在天生的 ...

  6. bzoj 4198: [Noi2015]荷马史诗

    Description 追逐影子的人,自己就是影子. --荷马 Allison 最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷马史诗>.但是由& ...

  7. bzoj 3531: [Sdoi2014]旅行

    Description S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,满足从一个城市出发可以到达其它所有城市.每个城市信仰不同的宗教,如飞天面条神教.隐形独角兽教.绝地教都是常见的信仰. ...

  8. kafka资料

    https://www.cnblogs.com/the-tops/p/5685955.html

  9. 巧用php中的array_filter()函数去掉多维空值

    一直一维array_filter() 函数只能去除一维数组,其实这个函数也能去除多维数组: $arr =[ '0'=>array(), '1'=>'false', '2'=>'tes ...

  10. R语言命令行参数

        批量画图任务中,需要在R中传入若干参数,之前对做法是在perl中每一个任务建立一个Rscript,这种方式超级不cool,在群里学习到R的@ARGV调用方式,差不多能够达到批量任务的要求: a ...