TensorFlow —— Demo
import tensorflow as tf
g = tf.Graph() # 创建一个Graph对象
在模型中有两个“全局”风格的Variable对象:global_step 和 total_output 。它们本质上是全局的,因此在声明它们时需要与数据流图的其他节点区分开,并把它们放入自己的名称作用域。trainable= False的设置使得该Variable对象对象不会对模型造成影响(因为没有任何训练的步骤),但该设置明确指定了这些Variable对象只能通过手工设置。
shape 为 None 代表流经边的张量为任意长度的向量;
shape 为 [] 代表流经边的张量为一个标量。
构建数据流图
with g.as_default(): # 将 Graph对象 设为默认 Graph对象
with tf.name_scope('variables'):
# 记录数据流图运行次数的 Variable 对象
# 这是一种常见的范式,在整个API中,这种范式会频繁出现
global_step = tf.Variable(0, dtype= tf.float32, trainable= False, name= 'global_step')
# 追踪该模型的所有输出随时间的累加和的 Variable 对象
total_output = tf.Variable(0.0, dtype= tf.float32, trainable= False, name= 'total_output')
with tf.name_scope('transformation'): # 该模型的核心变换部分
# 独立的输入层
with tf.name_scope('input'):
# 创建输出占位符,用于接收任意长度的向量
a = tf.placeholder(tf.float32, shape= [None], name= 'input_placeholder_a')
# 独立的中间层
with tf.name_scope('intermediate_layer'):
# 对整个向量实施乘法和加法
b = tf.reduce_prod(a, name= 'prod_b')
c = tf.reduce_sum(a, name= 'sum_c')
# 独立的输出层
with tf.name_scope('output'):
output = tf.add(b, c, name= 'output')
# 对变量进行更新
with tf.name_scope('update'):
# 用最新的输出更新Variable对象total_output
update_total = total_output.assign(output)
# 将Variable对象global_step增 1 ,只要数据流图运行,该操作便需要进行
increment_step = global_step.assign_add(1)
with tf.name_scope('summaries'):
avg = tf.div(update_total, tf.cast(increment_step, tf.float32), name= 'average')
# 为输出节点创建汇总数据
tf.summary.scalar('Output', output)
tf.summary.scalar('Sum of outputs over time', update_total)
tf.summary.scalar('Average of outputs over time', avg)
with tf.name_scope('global_ops'):
# 初始化Op
init = tf.global_variables_initializer()
# 将所有汇总数据合并到一个Op中
merged_summaries = tf.summary.merge_all()
INFO:tensorflow:Summary name Sum of outputs over time is illegal; using Sum_of_outputs_over_time instead.
INFO:tensorflow:Summary name Average of outputs over time is illegal; using Average_of_outputs_over_time instead.
为什么将 tf.summary.merge_all() \(Op\) 放在 “\(global\_ops\)” 名称作用域,而非放在 “\(summaries\)” 作用域?
- 一般而言,将
tf.summary.merge_all()与其他全局\(Op\)放在一起是最佳做法。我们的数据流图只为汇总数据设置了一个环节,但这并不妨碍去想象一个拥有Variable、Op和名称作用域等的不同汇总数据的数据流图。通过保持tf.summary.merge_all()的分离,可确保用户无需记忆放置它的特定“summary” 代码块,从而比较容易找到该\(Op\)。
运行数据流图
sess = tf.Session(graph= g)
# 保存汇总数据
writer = tf.summary.FileWriter('E:/Graphs/xin_graph', g)
sess.run(init)
def run_graph(input_tensor):
'''
运行计算图
'''
feed_dict = {a: input_tensor}
_, step, summary = sess.run([output, increment_step, merged_summaries],feed_dict= feed_dict)
writer.add_summary(summary, global_step= step)
# 用不同的输入运行该数据流图
run_graph([2, 8])
run_graph([3, 1, 3, 3])
run_graph([8])
run_graph([1, 2, 3])
run_graph([11, 4])
run_graph([4, 1])
run_graph([7, 3, 1])
run_graph([6, 3])
run_graph([0, 2])
run_graph([4, 5 ,6])
writer.flush() # 将汇总数据写入磁盘
writer.close()
sess.close()
关于Tensorboard
Tensorboard踩坑记:https://zhuanlan.zhihu.com/p/29284886
TensorFlow —— Demo的更多相关文章
- android应用市场、社区客户端、漫画App、TensorFlow Demo、歌词显示、动画效果等源码
Android精选源码 MVP架构Android应用市场项目 android刻度盘控件源码 Android实现一个社区客户端 android商品详情页上拉查看详情 基于RxJava+Retrofit2 ...
- cnn汉字识别 tensorflow demo
# -*- coding: utf-8 -*- import tensorflow as tf import os import random import tensorflow.contrib.sl ...
- TensorFlow 在android上的Demo(1)
转载时请注明出处: 修雨轩陈 系统环境说明: ------------------------------------ 操作系统 : ubunt 14.03 _ x86_64 操作系统 内存: 8GB ...
- TensorFlow Lite demo——就是为嵌入式设备而存在的,底层调用NDK神经网络API,注意其使用的tf model需要转换下,同时提供java和C++ API,无法使用tflite的见后
Introduction to TensorFlow Lite TensorFlow Lite is TensorFlow’s lightweight solution for mobile and ...
- YOLO2:实时目标检测视频教程,视频演示, Android Demo ,开源教学项目,论文。
实时目标检测和分类 GIF 图: 视频截图: 论文: https://arxiv.org/pdf/1506.02640.pdf https://arxiv.org/pdf/1612.08242.pdf ...
- 学习笔记TF066:TensorFlow移动端应用,iOS、Android系统实践
TensorFlow对Android.iOS.树莓派都提供移动端支持. 移动端应用原理.移动端.嵌入式设备应用深度学习方式,一模型运行在云端服务器,向服务器发送请求,接收服务器响应:二在本地运行模型, ...
- 移动端目标识别(3)——使用TensorFlow Lite将tensorflow模型部署到移动端(ssd)之Running on mobile with TensorFlow Lite (写的很乱,回头更新一个简洁的版本)
承接移动端目标识别(2) 使用TensorFlow Lite在移动设备上运行 在本节中,我们将向您展示如何使用TensorFlow Lite获得更小的模型,并允许您利用针对移动设备优化 ...
- Distributed TensorFlow
Distributed TensorFlow Todo list: Distributed TensorFlow简介 Distributed TensorFlow的部署与运行 对3个台主机做多卡GPU ...
- darkflow测试和训练yolo
转自 https://blog.csdn.net/u011961856/article/details/76582669参考自github:https://github.com/thtrieu/dar ...
随机推荐
- 使用phpexcel类读写excel文件
使用原生php读写excel文件的博文地址: 基于使用原生php读写excel文件的不靠谱,本文将简单介绍如何使用第三方类库phpexcel来读写excel文件. 首先,需要到githut下载phpe ...
- 实现响应式——Bootstrap的删格系统详解
Bootstrap 今天和大家一起学习如今很流行的前端框架之一,Bootstrap框架. 前言 今天带大家看看Bootstrap框架,其实我呢主要还是用里面的删格系统,单单这个删格系统就比较强大了.其 ...
- LeetCode 531. Longly Pixel I (孤独的像素之一) $
Given a picture consisting of black and white pixels, find the number of black lonely pixels. The pi ...
- 忘记root密码,进入单用户模式修改密码
进入单用户模式 rhel61.在系统数秒时,按下键,进入到系统引导菜单 中2.选择系统后 按“e”键 选择kernel后 按“e”键 后空格 1+回车 b:启动系统 进入到单用户模式 rhel71.在 ...
- Strange fuction
Strange fuction Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- nginx服务部署 说明
第1章 常用的软件 1.1 常用来提供静态服务的软件 Apache :这是中小型Web服务的主流,Web服务器中的老大哥, Nginx :大型网站Web服务的主流,曾经Web服务器中的初生牛犊 ...
- 在ASP.NET Core中使用AOP来简化缓存操作
前言 关于缓存的使用,相信大家都是熟悉的不能再熟悉了,简单来说就是下面一句话. 优先从缓存中取数据,缓存中取不到再去数据库中取,取到了在扔进缓存中去. 然后我们就会看到项目中有类似这样的代码了. pu ...
- selenium+testN自动化测试框架搭建
自动化测试框架搭建 1 Java环境的搭建 1.1访问oracle的官网下载最新版本的jdk http://www.oracle.com/technetwork/java/javase/downloa ...
- 06.十分钟学会表达式语言EL
一. 概念:MVC设计模式一个主要好处就是让jsp中的代码越来越来少,而且规定只能出现三种代码:接收属性,判断语句,迭代输出.但是,在开发中,jsp输出至少还是需要接受VO对象的,这时候为了避免导入V ...
- 【机器学习】TensorFlow学习(一)
感谢中国人民大学胡鹤老师,课讲得非常好~ 首先,何谓tensor?即高维向量,例如矩阵是二维,tensor是更广义意义上的n维向量(有type+shape) TensorFlow执行过程为定义图,其中 ...