hdu_3483A Very Simple Problem(C(m,n)+快速幂矩阵)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3483
A Very Simple Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 945 Accepted Submission(s): 471
The input ends up with three negative numbers, which should not be processed as a case.
3 4 1000
-1 -1 -1
444
//计算排列数(杨辉三角)
//C(m,n) = C(m-1,n-1)+C(m-1,n)
//快速幂
/*
* [题意]
* 输入n, x, m
* 求(1^x)*(x^1)+(2^x)*(x^2)+(3^x)*(x^3)+...+(n^x)*(x^n)
* [解题方法]
* 设f[n] = [x^n, n*(x^n), (n^2)*(x^n),..., (n^x)*(x^n)]
* 则f[n][k] = (n^k)*(x^n)
* 问题转化为求:( g[n] = f[1][x]+f[2][x]+...+f[n][x] )
* 设C(i,j)为组合数,即i种元素取j种的方法数
* 所以有:f[n+1][k] = ((n+1)^k)*(x^(n+1)) (二次多项式展开)
* = x*( C(k,0)*(x^n) +C(k,1)*n*(x^n)+...+C(k,k)*(n^k)*(x^n) )
* = x*( C(k,0)*f[n][0]+C(k,1)*f[n][1]+...+C(k,k)*f[n][k] )
* 所以得:
* |x*1 0................................0| |f[n][0]| |f[n+1][0]|
* |x*1 x*1 0............................0| |f[n][1]| |f[n+1][1]|
* |x*1 x*2 x*1 0........................0| * |f[n][2]| = |f[n+1][2]|
* |......................................| |.......| |.........|
* |x*1 x*C(k,1) x*C(k,2)...x*C(k,x) 0...0| |f[n][k]| |f[n+1][k]|
* |......................................| |.......| |.........|
* |x*1 x*C(x,1) x*C(x,2).......x*C(x,x) 0| |f[n][x]| |f[n+1][x]|
* |0................................0 1 1| |g[n-1] | | g[ n ] |
*/
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
const ll maxn = ;
ll c[maxn][maxn];
ll n, mod, x, m;
struct Mat{
ll f[maxn][maxn];
};
void init()
{
ll i,j,k;
c[][] = c[][] = c[][] = ;
for(i = ; i < maxn; i++){
c[i][] = c[i][i] = ;
for(j = ; j < i; j++){
c[i][j] = c[i-][j]+c[i-][j-];
}
}
}
Mat operator *(Mat a, Mat b)
{
ll i, j, k;
Mat c;
memset(c.f,,sizeof(c.f));
for(k = ; k < m; k++){
for(i = ; i < m; i++){
for(j = ; j < m; j++){
if(!b.f[k][j]) continue;
c.f[i][j] = (c.f[i][j]+(a.f[i][k]*b.f[k][j])%mod)%mod;
}
}
}
return c;
}
Mat multi(Mat a,ll b)
{
Mat s;
memset(s.f,,sizeof(s.f));
for(int i = ; i < m; i++){
s.f[i][i] = ;
}
while(b){
if(b&) s = s*a;
a = a*a;
b>>=;
}
return s;
}
int main()
{
init();
while(~scanf("%lld%lld%lld",&n,&x,&mod))
{
if(n<&&x<&&mod<) break;
Mat e;
ll i, j;
ll ans = ;
memset(e.f,,sizeof(e.f));
for(i = ; i <= x; i++){
for(j = i; j <= x; j++){
e.f[j][i] = c[x-i][j-i]*x%mod;
}
}
e.f[][x+] = e.f[x+][x+] = ;
m = x+;
e = multi(e,n);
for(i = ; i < m-; i++) ans = (ans+x*e.f[i][m-])%mod;
printf("%lld\n",(ans+mod)%mod);
}
return ;
}
hdu_3483A Very Simple Problem(C(m,n)+快速幂矩阵)的更多相关文章
- hdu_2604Queuing(快速幂矩阵)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604 Queuing Time Limit: 10000/5000 MS (Java/Others) ...
- Number Sequence(快速幂矩阵)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1005 Number Sequence Time Limit: 2000/1000 MS (Java/O ...
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
- 【bzoj4870】[Shoi2017]组合数问题 dp+快速幂/矩阵乘法
题目描述 输入 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 输出 一行一个整数 ...
- 快速幂 & 矩阵快速幂
目录 快速幂 实数快速幂 矩阵快速幂 快速幂 实数快速幂 普通求幂的方法为 O(n) .在一些要求比较严格的题目上很有可能会超时.所以下面来介绍一下快速幂. 快速幂的思想其实是将数分解,即a^b可以分 ...
- hdu3483 A Very Simple Problem 非线性递推方程2 矩阵快速幂
题目传送门 题目描述:给出n,x,mod.求s[n]. s[n]=s[n-1]+(x^n)*(n^x)%mod; 思路:这道题是hdu5950的进阶版.大家可以看这篇博客hdu5950题解. 由于n很 ...
- 整数快速乘法/快速幂+矩阵快速幂+Strassen算法
快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c 二.矩 ...
- jiulianhuan 快速幂--矩阵快速幂
题目信息: 1471: Jiulianhuan 时间限制: 1 Sec 内存限制: 128 MB 提交: 95 解决: 22 题目描述 For each data set in the input ...
- hiho #1143 : 骨牌覆盖问题·一 (运用快速幂矩阵)
#1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题:我们有一个2xN的长条形棋盘,然 ...
随机推荐
- grep 、find 、tree 新发现
[root@localhost tftpboot]# ip address | grep -A 1 " eno16777736"2: eno16777736: <BROADC ...
- JavaSE项目之聊天室
引子: 当前,互联网 体系结构的参考模型主要有两种,一种是OSI参考模型,另一种是TCP/IP参考模型. 一.OSI参考模型,即开放式通信系统互联参考模型(OSI/RM,Open Systems In ...
- ucore lab1 bootloader学习笔记
---恢复内容开始--- 开机流程回忆 以Intel 80386为例,计算机加电后,CPU从物理地址0xFFFFFFF0(由初始化的CS:EIP确定,此时CS和IP的值分别是0xF000和0xFFF0 ...
- Prism for WPF再探(基于Prism事件的模块间通信)
上篇博文链接 Prism for WPF初探(构建简单的模块化开发框架) 一.简单介绍: 在上一篇博文中初步搭建了Prism框架的各个模块,但那只是搭建了一个空壳,里面的内容基本是空的,在这一篇我将实 ...
- Hello TensorFlow 二 (GPU)
官方说明:https://www.tensorflow.org/install/ 环境: 操作系统 :Windows 10 家庭中文版 处理器 : Intel(R) Core(TM) i7-7700 ...
- MobaXterm
MobaXterm又名MobaXVT,是一款增强型终端.X服务器和Unix命令集(GNU/ Cygwin)封装在一个单一的便携式exe文件.MobaXterm可以开启多个终端视窗,以最新的X服务器为基 ...
- 如何去除本地文件与svn服务器的关联
1.每个目录逐个去删除.svn文件夹 .svn属于隐藏文件夹,可通过操纵Windows文件资源管理器使隐藏文件可视,删除该文件,即可. 2.首先建立一个新文件,文件命名为remove-svn-fold ...
- TensorFlow常用的函数
TensorFlow中维护的集合列表 在一个计算图中,可以通过集合(collection)来管理不同类别的资源.比如通过 tf.add_to_collection 函数可以将资源加入一个 或多个集合中 ...
- Python学习_05_条件、循环
条件 和其他语言类似,python中使用if...elif...else来形成分支,支持三目操作符 ?:,python中没有switch,但是缩进的特性让if...elif...else的结构同样便于 ...
- css实现切角效果
1. 一个切角 思路:如果我们要得到有一个切角的元素,我们只需要使用一个径向渐变就可以达到这个目标,这个渐变需要把一个透明色标放在切角处,然后再相同的位置设置另一个色标,并且把它的颜色设置成我们想要的 ...