hdu_3483A Very Simple Problem(C(m,n)+快速幂矩阵)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3483
A Very Simple Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 945 Accepted Submission(s): 471

The input ends up with three negative numbers, which should not be processed as a case.
3 4 1000
-1 -1 -1
444
//计算排列数(杨辉三角)
//C(m,n) = C(m-1,n-1)+C(m-1,n)
//快速幂
/*
* [题意]
* 输入n, x, m
* 求(1^x)*(x^1)+(2^x)*(x^2)+(3^x)*(x^3)+...+(n^x)*(x^n)
* [解题方法]
* 设f[n] = [x^n, n*(x^n), (n^2)*(x^n),..., (n^x)*(x^n)]
* 则f[n][k] = (n^k)*(x^n)
* 问题转化为求:( g[n] = f[1][x]+f[2][x]+...+f[n][x] )
* 设C(i,j)为组合数,即i种元素取j种的方法数
* 所以有:f[n+1][k] = ((n+1)^k)*(x^(n+1)) (二次多项式展开)
* = x*( C(k,0)*(x^n) +C(k,1)*n*(x^n)+...+C(k,k)*(n^k)*(x^n) )
* = x*( C(k,0)*f[n][0]+C(k,1)*f[n][1]+...+C(k,k)*f[n][k] )
* 所以得:
* |x*1 0................................0| |f[n][0]| |f[n+1][0]|
* |x*1 x*1 0............................0| |f[n][1]| |f[n+1][1]|
* |x*1 x*2 x*1 0........................0| * |f[n][2]| = |f[n+1][2]|
* |......................................| |.......| |.........|
* |x*1 x*C(k,1) x*C(k,2)...x*C(k,x) 0...0| |f[n][k]| |f[n+1][k]|
* |......................................| |.......| |.........|
* |x*1 x*C(x,1) x*C(x,2).......x*C(x,x) 0| |f[n][x]| |f[n+1][x]|
* |0................................0 1 1| |g[n-1] | | g[ n ] |
*/
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
const ll maxn = ;
ll c[maxn][maxn];
ll n, mod, x, m;
struct Mat{
ll f[maxn][maxn];
};
void init()
{
ll i,j,k;
c[][] = c[][] = c[][] = ;
for(i = ; i < maxn; i++){
c[i][] = c[i][i] = ;
for(j = ; j < i; j++){
c[i][j] = c[i-][j]+c[i-][j-];
}
}
}
Mat operator *(Mat a, Mat b)
{
ll i, j, k;
Mat c;
memset(c.f,,sizeof(c.f));
for(k = ; k < m; k++){
for(i = ; i < m; i++){
for(j = ; j < m; j++){
if(!b.f[k][j]) continue;
c.f[i][j] = (c.f[i][j]+(a.f[i][k]*b.f[k][j])%mod)%mod;
}
}
}
return c;
}
Mat multi(Mat a,ll b)
{
Mat s;
memset(s.f,,sizeof(s.f));
for(int i = ; i < m; i++){
s.f[i][i] = ;
}
while(b){
if(b&) s = s*a;
a = a*a;
b>>=;
}
return s;
}
int main()
{
init();
while(~scanf("%lld%lld%lld",&n,&x,&mod))
{
if(n<&&x<&&mod<) break;
Mat e;
ll i, j;
ll ans = ;
memset(e.f,,sizeof(e.f));
for(i = ; i <= x; i++){
for(j = i; j <= x; j++){
e.f[j][i] = c[x-i][j-i]*x%mod;
}
}
e.f[][x+] = e.f[x+][x+] = ;
m = x+;
e = multi(e,n);
for(i = ; i < m-; i++) ans = (ans+x*e.f[i][m-])%mod;
printf("%lld\n",(ans+mod)%mod);
}
return ;
}
hdu_3483A Very Simple Problem(C(m,n)+快速幂矩阵)的更多相关文章
- hdu_2604Queuing(快速幂矩阵)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604 Queuing Time Limit: 10000/5000 MS (Java/Others) ...
- Number Sequence(快速幂矩阵)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1005 Number Sequence Time Limit: 2000/1000 MS (Java/O ...
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
- 【bzoj4870】[Shoi2017]组合数问题 dp+快速幂/矩阵乘法
题目描述 输入 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 输出 一行一个整数 ...
- 快速幂 & 矩阵快速幂
目录 快速幂 实数快速幂 矩阵快速幂 快速幂 实数快速幂 普通求幂的方法为 O(n) .在一些要求比较严格的题目上很有可能会超时.所以下面来介绍一下快速幂. 快速幂的思想其实是将数分解,即a^b可以分 ...
- hdu3483 A Very Simple Problem 非线性递推方程2 矩阵快速幂
题目传送门 题目描述:给出n,x,mod.求s[n]. s[n]=s[n-1]+(x^n)*(n^x)%mod; 思路:这道题是hdu5950的进阶版.大家可以看这篇博客hdu5950题解. 由于n很 ...
- 整数快速乘法/快速幂+矩阵快速幂+Strassen算法
快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c 二.矩 ...
- jiulianhuan 快速幂--矩阵快速幂
题目信息: 1471: Jiulianhuan 时间限制: 1 Sec 内存限制: 128 MB 提交: 95 解决: 22 题目描述 For each data set in the input ...
- hiho #1143 : 骨牌覆盖问题·一 (运用快速幂矩阵)
#1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题:我们有一个2xN的长条形棋盘,然 ...
随机推荐
- UITextFiled的输入框改成一条下划线
在一些程序的界面中,它们的编辑框是一条线,而UITextFiled本身并没有这种style,所有需要我们自己设置.方法还是挺多的 第一种 , (1).我们可以声明一个类继承与UITextFiled ( ...
- JDK 1.8 源码阅读和理解
根据 一篇文章教会你,如何做到招聘要求中的“要有扎实的Java基础” 的指引,决定开始阅读下JDK源码. 本文将作为源码阅读总纲 一.精读部分 java.io java.lang java.util ...
- SpringMVC 中配置 Swagger 插件.
一.简介 Swagger的目标是为REST API定义一个与语言无关的标准接口,允许用户发现和理解计算机服务的功能,而无需访问源代码.当通过Swagger正确定义时,用户可以用最少量的实现逻辑理解远程 ...
- Java并发编程之ThreadLocal源码分析
## 1 一句话概括ThreadLocal<font face="微软雅黑" size=4> 什么是ThreadLocal?顾名思义:线程本地变量,它为每个使用该对象 ...
- Qt数据库集成应用封装
平时的大大小小的项目中,基本上都需要与数据库打交道,会遇到各种各样的应用场景,本人主要遇到四种场景1:数据库自动重连,例如mysql数据库中经常遇到服务器挂掉的情况,需要自动检测并重新连接数据库.2: ...
- 如何复制Google浏览器的控制台内容
今天在调用第三方的接口,对着文档,传参数,老是报参数错误,没办法只能把参数打印出来看看,在Google控制台上看,费劲,就想复制出来,格式化一下,然后对着文档进行对比. console.info(JS ...
- 讲述Sagit.Framework解决:双向引用导致的IOS内存泄漏(中)- IOS不为人知的Bug
前言: 话说昨晚还是前晚,写了一篇:讲述Sagit.Framework解决:双向引用导致的IOS内存泄漏(上) 文章写到最后时,多了很多莫名奇妙的问题!!! 为了解决了这些莫名奇妙的问题,我又战斗了2 ...
- umask的作用[转]
umask的作用 umask 命令允许你设定文件创建时的缺省模式,对应每一类用户(文件属主.同组用户.其他用户)存在一个相应的umask值中的数字.对于文件来说,这一数字的最 大值分别是6.系统不允许 ...
- commons-dbutils 字段名称转换
我们在写bean的时候,字段通常都使用小驼峰命名法,但是在设计数据库时,一般使用下划线分割命名.这样,在取出数据库字段时,还需要转换.如何简洁的实现这种转换呢? 你能遇到的问题,只要是普遍存在的,大家 ...
- MicroPython+北斗+GPS+GPRS:TPYBoardv702短信功能使用说明
转载请以链接形式注明文章来源(MicroPythonQQ技术交流群:157816561,公众号:MicroPython玩家汇) TPYBoardv702是目前市面上唯一支持通信定位功能的MicroPy ...