论文笔记 Network In Network
这篇论文思路简单、易实现、效果好,是一篇难得的佳作。从实现的角度理解,就是做了以下两个替换:
- 将线性卷积替换为多层感知机(某种程度上,线性卷积可以认为识一层感知机)。
- 将全连接层用global average pooling layer替换。
下面我们就来分析引入上述两个替换的妙处。首先分析第一个替换的妙处,替换的效果(图示如下)
论文中提到“The linear convolution is sufficient for abstraction when the instances of the latent concepts are linearly separable.”,然而现实太复杂,the instances of the latent concepts通常不是线性可分的。在这种情况下,通常有两种做法:一是,引入大量的linear convolution(以体量应对复杂现实);二是,干脆寻找一个能够模拟任意复杂情形的“参数化函数”(以灵活性应对复杂现实)。
可以预见,如果你计算、存储资源充裕的话,你可以采取简单暴力的第一种情形;通常情况下,计算、存储资源受限,因此第二种做法更加接近现实一点(也更容易将算法植入到计算、存储资源有限的移动设备上,如手机)。下面的问题就是寻找所需的“参数化函数”。庆幸的是,多层感知机在某种程度上能够满足我们的需求,此外它能够与BP算法完美兼容(这篇论文选择的就是多层感知机)。这样的Mlpconv layer就可以作为深度网络的几个基本block,用以构建深度网络。
在CNN当中,随着层数的加深,我们得到的特征越来越抽象。这种抽象是以组合较低一层抽象特征得到的。从这个角度理解,如果在较低层就能够比之前对应层更抽象的特征,然后整个网络的输出抽象程度将会变得更高,这样高度抽象的特征对于分类、任务迁移都是有极大帮助的。
下面分析第二个替换的妙处
传统的CNN是将最后一层的卷积输出向量化,然后输入到全连接层,全连接层之后是常用的分类损失函数,如softmax。如果最后一层卷积输出特征维度过高、类别较多,那么这一块引入的参数量是很大的,这会造成网络过拟合(还好,目前有一些防止过拟合的手段,如dropout)。
“The idea is to generate one feature map for each corresponding category of the classification task in the last mlpconv layer. Instead of adding fully connected layers on top od the feature maps, we take the advantage of each feature map, and the resulting vector is fed directly into the softmax layer”,这样做的好处是,直接在类别与feature maps之间建立了联系,“The features maps can be easily interpreted as categories confidence maps”。此外,这里没有引入要学习的参数,也间接起到了防止过拟合的效果。
在Caffe框架下实现上述网络是一个很简单的事情,以在cifar10上的网络结果为例
layers {
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
blobs_lr:
blobs_lr:
weight_decay: .
weight_decay: .
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
}
}
}
layers {
name: "relu1"
type: RELU
bottom: "conv1"
top: "conv1"
}
layers {
name: "cccp1"
type: CONVOLUTION
bottom: "conv1"
top: "cccp1"
blobs_lr:
blobs_lr:
weight_decay:
weight_decay:
convolution_param {
num_output:
group:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value:
}
}
}
layers {
name: "relu_cccp1"
type: RELU
bottom: "cccp1"
top: "cccp1"
}
layers {
name: "cccp2"
type: CONVOLUTION
bottom: "cccp1"
top: "cccp2"
blobs_lr:
blobs_lr:
weight_decay:
weight_decay:
convolution_param {
num_output:
group:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value:
}
}
}
layers {
name: "relu_cccp2"
type: RELU
bottom: "cccp2"
top: "cccp2"
}
两个kernel_size为1的卷积核实现的就是多层感知机的功能,全部的网络结果代码如下
name: "CIFAR10_full"
layers {
name: "cifar"
type: DATA
top: "data"
top: "label"
data_param {
source: "cifar-train-leveldb"
batch_size:
}
include: { phase: TRAIN }
}
layers {
name: "cifar"
type: DATA
top: "data"
top: "label"
data_param {
source: "cifar-test-leveldb"
batch_size:
}
include: { phase: TEST }
}
layers {
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
blobs_lr:
blobs_lr:
weight_decay: .
weight_decay: .
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
}
}
}
layers {
name: "relu1"
type: RELU
bottom: "conv1"
top: "conv1"
}
layers {
name: "cccp1"
type: CONVOLUTION
bottom: "conv1"
top: "cccp1"
blobs_lr:
blobs_lr:
weight_decay:
weight_decay:
convolution_param {
num_output:
group:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value:
}
}
}
layers {
name: "relu_cccp1"
type: RELU
bottom: "cccp1"
top: "cccp1"
}
layers {
name: "cccp2"
type: CONVOLUTION
bottom: "cccp1"
top: "cccp2"
blobs_lr:
blobs_lr:
weight_decay:
weight_decay:
convolution_param {
num_output:
group:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value:
}
}
}
layers {
name: "relu_cccp2"
type: RELU
bottom: "cccp2"
top: "cccp2"
}
layers {
name: "pool1"
type: POOLING
bottom: "cccp2"
top: "pool1"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layers {
name: "drop3"
type: DROPOUT
bottom: "pool1"
top: "pool1"
dropout_param {
dropout_ratio: 0.5
}
}
layers {
name: "conv2"
type: CONVOLUTION
bottom: "pool1"
top: "conv2"
blobs_lr:
blobs_lr:
weight_decay: .
weight_decay: .
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
}
}
}
layers {
name: "relu2"
type: RELU
bottom: "conv2"
top: "conv2"
}
layers {
name: "cccp3"
type: CONVOLUTION
bottom: "conv2"
top: "cccp3"
blobs_lr:
blobs_lr:
weight_decay:
weight_decay:
convolution_param {
num_output:
group:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value:
}
}
}
layers {
name: "relu_cccp3"
type: RELU
bottom: "cccp3"
top: "cccp3"
}
layers {
name: "cccp4"
type: CONVOLUTION
bottom: "cccp3"
top: "cccp4"
blobs_lr:
blobs_lr:
weight_decay:
weight_decay:
convolution_param {
num_output:
group:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value:
}
}
}
layers {
name: "relu_cccp4"
type: RELU
bottom: "cccp4"
top: "cccp4"
}
layers {
name: "pool2"
type: POOLING
bottom: "cccp4"
top: "pool2"
pooling_param {
pool: AVE
kernel_size:
stride:
}
}
layers {
name: "drop6"
type: DROPOUT
bottom: "pool2"
top: "pool2"
dropout_param {
dropout_ratio: 0.5
}
}
layers {
name: "conv3"
type: CONVOLUTION
bottom: "pool2"
top: "conv3"
blobs_lr: .
blobs_lr: .
weight_decay: .
weight_decay: .
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
}
}
}
layers {
name: "relu3"
type: RELU
bottom: "conv3"
top: "conv3"
}
layers {
name: "cccp5"
type: CONVOLUTION
bottom: "conv3"
top: "cccp5"
blobs_lr:
blobs_lr:
weight_decay:
weight_decay:
convolution_param {
num_output:
group:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value:
}
}
}
layers {
name: "relu_cccp5"
type: RELU
bottom: "cccp5"
top: "cccp5"
}
layers {
name: "cccp6"
type: CONVOLUTION
bottom: "cccp5"
top: "cccp6"
blobs_lr: 0.1
blobs_lr: 0.1
weight_decay:
weight_decay:
convolution_param {
num_output:
group:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value:
}
}
}
layers {
name: "relu_cccp6"
type: RELU
bottom: "cccp6"
top: "cccp6"
}
layers {
name: "pool3"
type: POOLING
bottom: "cccp6"
top: "pool3"
pooling_param {
pool: AVE
kernel_size:
stride:
}
}
layers {
name: "accuracy"
type: ACCURACY
bottom: "pool3"
bottom: "label"
top: "accuracy"
include: { phase: TEST }
}
layers {
name: "loss"
type: SOFTMAX_LOSS
bottom: "pool3"
bottom: "label"
top: "loss"
}
总结:这篇文章引入的改进网络结构的方式、global average pooling启发了后续很多算法,以后有时间再慢慢分析。
论文笔记 Network In Network的更多相关文章
- 论文笔记系列-Neural Network Search :A Survey
论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesia ...
- 论文笔记-Deep Affinity Network for Multiple Object Tracking
作者: ShijieSun, Naveed Akhtar, HuanShengSong, Ajmal Mian, Mubarak Shah 来源: arXiv:1810.11780v1 项目:http ...
- 论文笔记——N2N Learning: Network to Network Compression via Policy Gradient Reinforcement Learning
论文地址:https://arxiv.org/abs/1709.06030 1. 论文思想 利用强化学习,对网络进行裁剪,从Layer Removal和Layer Shrinkage两个维度进行裁剪. ...
- 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior
[论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...
- 论文笔记: Dual Deep Network for Visual Tracking
论文笔记: Dual Deep Network for Visual Tracking 2017-10-17 21:57:08 先来看文章的流程吧 ... 可以看到,作者所总结的三个点在于: 1. ...
- Face Aging with Conditional Generative Adversarial Network 论文笔记
Face Aging with Conditional Generative Adversarial Network 论文笔记 2017.02.28 Motivation: 本文是要根据最新的条件产 ...
- 论文《Network in Network》笔记
论文:Lin M, Chen Q, Yan S. Network In Network[J]. Computer Science, 2013. 参考:关于CNN中1×1卷积核和Network in N ...
- 论文笔记 《Maxout Networks》 && 《Network In Network》
论文笔记 <Maxout Networks> && <Network In Network> 发表于 2014-09-22 | 1条评论 出处 maxo ...
- [论文阅读笔记] Structural Deep Network Embedding
[论文阅读笔记] Structural Deep Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的表示学习方法大多采用浅层模型,这可能不能 ...
- [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion
[论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1 ...
随机推荐
- fir.im Weekly - 如何在 iOS 上构建 TensorFlow 应用
本期 fir.im Weekly 收集了最近新鲜出炉的 iOS /Android 技术分享,包括 iOS 系统开发 TensorFlow 教程.iOS 新架构.iOS Notifications 推送 ...
- Java 原始数据类型的计算:运算符重载(Operator Overload)和类型转换(Type Conversion)
原文阅读:<算法(第四版)>第一章 第一节:基础编程模型 有没有在面试的时候被问到:下面这几行代码的执行结果是什么?依据是什么? System.out.println (5/3); Sys ...
- Linux - 进程间通信 - 信号量
一.概念 简单来讲,信号量是一个用来描述临界资源的资源个数的计数器. 信号量的本质是一种数据操作锁,它本身不具有数据交换的功能,而是通过控制其他的通信资源(文件.外部设备等)来实现进程间通信, 他本身 ...
- python13_day4
上周复习 1,python基础 2,基本数据类型 3,函数式编程 函数式编程.三元运行.内置函数.文件处理 容易出问题的点 函数默认返回值为none,对于列表字典,传入引用. 1 2 3 4 5 6 ...
- MYSQL不能从远程连接的解决方法
为了在其它电脑上能用root用户登录,需进行以下动作: 首先在mysql服务器端打开mysql 1. mark>mysql -u root -p //输入密码,进入MySQL服务器 2.mysq ...
- java并发程序——Excutor
概述 Excutor这个接口用的不多,但是ThreadPoolExcutor这个就用的比较多了,ThreadPoolExcutor是Excutor的一个实现.Excutor体系难点没有,大部分的关键点 ...
- IOS(二)基本控件UIButton、简易动画、transform属性、UIImageView
UIButton //1.设置UIButton 的左右移动 .center属性 获得 CGPoint 来修改x y //1.设置UIButton 的放大缩小 bounds属性 获得CGRect 然后通 ...
- OC中常见的结构体,以及NSNumber、NSValue、NSDate的使用
常见的结构体 NSPoint和CGPoint NSSize和CGSize NSRect 和 CGRect NSPoint和CGPoint的使用 NSPoint和CGPoint是同义的 typedef ...
- 像写C#一样编写java代码
JDK8提供了非常多的便捷用法和语法糖,其编码效率几乎接近于C#开发,maven则是java目前为止最赞的jar包管理和build工具,这两部分内容都不算多,就合并到一起了. 愿编写java代码的过程 ...
- 让Unity的Inspector面板支持字符限制(restrict)功能
今天在优化红点组件,笔者打算将红点id由10进制改为16进制处理,就打算将红点id字段由uint类型改成string类型,用于填写16进制的字符(因为在Inspector面板里,uint/int类型字 ...