ConcurrentHashMap是Java并发包中提供的一个线程安全且高效的HashMap实现(若对HashMap的实现原理还不甚了解,可参考我的另一篇文章HashMap实现原理及源码分析),ConcurrentHashMap在并发编程的场景中使用频率非常之高,本文就来分析下ConcurrentHashMap的实现原理,并对其实现原理进行分析(JDK1.7).

ConcurrentHashMap实现原理

  众所周知,哈希表是中非常高效,复杂度为O(1)的数据结构,在Java开发中,我们最常见到最频繁使用的就是HashMap和HashTable,但是在线程竞争激烈的并发场景中使用都不够合理。

  HashMap :先说HashMap,HashMap是线程不安全的,在并发环境下,可能会形成环状链表(扩容时可能造成,具体原因自行百度google或查看源码分析),导致get操作时,cpu空转,所以,在并发环境中使用HashMap是非常危险的。

  HashTable : HashTable和HashMap的实现原理几乎一样,差别无非是1.HashTable不允许key和value为null;2.HashTable是线程安全的。但是HashTable线程安全的策略实现代价却太大了,简单粗暴,get/put所有相关操作都是synchronized的,这相当于给整个哈希表加了一把大锁,多线程访问时候,只要有一个线程访问或操作该对象,那其他线程只能阻塞,相当于将所有的操作串行化,在竞争激烈的并发场景中性能就会非常差。

  HashTable性能差主要是由于所有操作需要竞争同一把锁,而如果容器中有多把锁,每一把锁锁一段数据,这样在多线程访问时不同段的数据时,就不会存在锁竞争了,这样便可以有效地提高并发效率。这就是ConcurrentHashMap所采用的"分段锁"思想。

  

ConcurrentHashMap源码分析  

ConcurrentHashMap采用了非常精妙的"分段锁"策略,ConcurrentHashMap的主干是个Segment数组。

 final Segment<K,V>[] segments;

  Segment继承了ReentrantLock,所以它就是一种可重入锁(ReentrantLock)。在ConcurrentHashMap,一个Segment就是一个子哈希表,Segment里维护了一个HashEntry数组,并发环境下,对于不同Segment的数据进行操作是不用考虑锁竞争的。(就按默认的ConcurrentLeve为16来讲,理论上就允许16个线程并发执行,有木有很酷)

  所以,对于同一个Segment的操作才需考虑线程同步,不同的Segment则无需考虑。

Segment类似于HashMap,一个Segment维护着一个HashEntry数组

 transient volatile HashEntry<K,V>[] table;

HashEntry是目前我们提到的最小的逻辑处理单元了。一个ConcurrentHashMap维护一个Segment数组,一个Segment维护一个HashEntry数组。

 static final class HashEntry<K,V> {
final int hash;
final K key;
volatile V value;
volatile HashEntry<K,V> next;
//其他省略
}

我们说Segment类似哈希表,那么一些属性就跟我们之前提到的HashMap差不离,比如负载因子loadFactor,比如阈值threshold等等,看下Segment的构造方法

Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
this.loadFactor = lf;//负载因子
this.threshold = threshold;//阈值
this.table = tab;//主干数组即HashEntry数组
}

我们来看下ConcurrentHashMap的构造方法

  public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
//MAX_SEGMENTS 为1<<16=65536,也就是最大并发数为65536
if (concurrencyLevel > MAX_SEGMENTS)
concurrencyLevel = MAX_SEGMENTS;
//2的sshif次方等于ssize,例:ssize=16,sshift=4;ssize=32,sshif=5
int sshift = 0;
//ssize 为segments数组长度,根据concurrentLevel计算得出
int ssize = 1;
while (ssize < concurrencyLevel) {
++sshift;
ssize <<= 1;
}
//segmentShift和segmentMask这两个变量在定位segment时会用到,后面会详细讲
this.segmentShift = 32 - sshift;
this.segmentMask = ssize - 1;
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
//计算cap的大小,即Segment中HashEntry的数组长度,cap也一定为2的n次方.
int c = initialCapacity / ssize;
if (c * ssize < initialCapacity)
++c;
int cap = MIN_SEGMENT_TABLE_CAPACITY;
while (cap < c)
cap <<= 1;
//创建segments数组并初始化第一个Segment,其余的Segment延迟初始化
Segment<K,V> s0 =
new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
(HashEntry<K,V>[])new HashEntry[cap]);
Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
UNSAFE.putOrderedObject(ss, SBASE, s0);
this.segments = ss;
}

  初始化方法有三个参数,如果用户不指定则会使用默认值,initialCapacity为16,loadFactor为0.75(负载因子,扩容时需要参考),concurrentLevel为16。

  从上面的代码可以看出来,Segment数组的大小ssize是由concurrentLevel来决定的,但是却不一定等于concurrentLevel,ssize一定是大于或等于concurrentLevel的最小的2的次幂。比如:默认情况下concurrentLevel是16,则ssize为16;若concurrentLevel为14,ssize为16;若concurrentLevel为17,则ssize为32。为什么Segment的数组大小一定是2的次幂?其实主要是便于通过按位与的散列算法来定位Segment的index。至于更详细的原因,有兴趣的话可以参考我的另一篇文章《HashMap实现原理及源码分析》,其中对于数组长度为什么一定要是2的次幂有较为详细的分析。

  接下来,我们来看看put方法

 public V put(K key, V value) {
Segment<K,V> s;
//concurrentHashMap不允许key/value为空
if (value == null)
throw new NullPointerException();
//hash函数对key的hashCode重新散列,避免差劲的不合理的hashcode,保证散列均匀
int hash = hash(key);
//返回的hash值无符号右移segmentShift位与段掩码进行位运算,定位segment
int j = (hash >>> segmentShift) & segmentMask;
if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck
(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
s = ensureSegment(j);
return s.put(key, hash, value, false);
}

 从源码看出,put的主要逻辑也就两步:1.定位segment并确保定位的Segment已初始化 2.调用Segment的put方法。

 关于segmentShift和segmentMask

  segmentShift和segmentMask这两个全局变量的主要作用是用来定位Segment,int j =(hash >>> segmentShift) & segmentMask。

  segmentMask:段掩码,假如segments数组长度为16,则段掩码为16-1=15;segments长度为32,段掩码为32-1=31。这样得到的所有bit位都为1,可以更好地保证散列的均匀性

  segmentShift:2的sshift次方等于ssize,segmentShift=32-sshift。若segments长度为16,segmentShift=32-4=28;若segments长度为32,segmentShift=32-5=27。而计算得出的hash值最大为32位,无符号右移segmentShift,则意味着只保留高几位(其余位是没用的),然后与段掩码segmentMask位运算来定位Segment。

  get/put方法

  get方法

 public V get(Object key) {
Segment<K,V> s;
HashEntry<K,V>[] tab;
int h = hash(key);
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
//先定位Segment,再定位HashEntry
if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {
for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return e.value;
}
}
return null;
}

  get方法无需加锁,由于其中涉及到的共享变量都使用volatile修饰,volatile可以保证内存可见性,所以不会读取到过期数据。

  来看下concurrentHashMap代理到Segment上的put方法,Segment中的put方法是要加锁的。只不过是锁粒度细了而已。

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
HashEntry<K,V> node = tryLock() ? null :
scanAndLockForPut(key, hash, value);//tryLock不成功时会遍历定位到的HashEnry位置的链表(遍历主要是为了使CPU缓存链表),若找不到,则创建HashEntry。tryLock一定次数后(MAX_SCAN_RETRIES变量决定),则lock。若遍历过程中,由于其他线程的操作导致链表头结点变化,则需要重新遍历。
V oldValue;
try {
HashEntry<K,V>[] tab = table;
int index = (tab.length - 1) & hash;//定位HashEntry,可以看到,这个hash值在定位Segment时和在Segment中定位HashEntry都会用到,只不过定位Segment时只用到高几位。
HashEntry<K,V> first = entryAt(tab, index);
for (HashEntry<K,V> e = first;;) {
if (e != null) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
if (!onlyIfAbsent) {
e.value = value;
++modCount;
}
break;
}
e = e.next;
}
else {
if (node != null)
node.setNext(first);
else
node = new HashEntry<K,V>(hash, key, value, first);
int c = count + 1;
              //若c超出阈值threshold,需要扩容并rehash。扩容后的容量是当前容量的2倍。这样可以最大程度避免之前散列好的entry重新散列,具体在另一篇文章中有详细分析,不赘述。扩容并rehash的这个过程是比较消耗资源的。
if (c > threshold && tab.length < MAXIMUM_CAPACITY)
rehash(node);
else
setEntryAt(tab, index, node);
++modCount;
count = c;
oldValue = null;
break;
}
}
} finally {
unlock();
}
return oldValue;
}

总结

  ConcurrentHashMap作为一种线程安全且高效的哈希表的解决方案,尤其其中的"分段锁"的方案,相比HashTable的全表锁在性能上的提升非常之大。本文对ConcurrentHashMap的实现原理进行了详细分析,并解读了部分源码,希望能帮助到有需要的童鞋。

ConcurrentHashMap实现原理及源码分析的更多相关文章

  1. HashMap和ConcurrentHashMap实现原理及源码分析

    HashMap实现原理及源码分析 哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表, ...

  2. ConcurrentHashMap实现原理以及源码分析

    ConcurrentHashMap是HashMap的高并发版本,是线程安全的,而HashMap是非线程安全的 一.底层实现 底层结构跟hashmap一样,都是通过数组+链表+红黑树实现的,不过它要保证 ...

  3. 2.Java集合-ConcurrentHashMap实现原理及源码分析

    一.为何用ConcurrentHashMap 在并发编程中使用HashMap可能会导致死循环,而使用线程安全的HashTable效率又低下. 线程不安全的HashMap 在多线程环境下,使用HashM ...

  4. OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波

    http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 201 ...

  5. (转)ReentrantLock实现原理及源码分析

    背景:ReetrantLock底层是基于AQS实现的(CAS+CHL),有公平和非公平两种区别. 这种底层机制,很有必要通过跟踪源码来进行分析. 参考 ReentrantLock实现原理及源码分析 源 ...

  6. 【转】HashMap实现原理及源码分析

    哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景极其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表,而HashMap的实现原理也常常出 ...

  7. 【OpenCV】SIFT原理与源码分析:DoG尺度空间构造

    原文地址:http://blog.csdn.net/xiaowei_cqu/article/details/8067881 尺度空间理论   自然界中的物体随着观测尺度不同有不同的表现形态.例如我们形 ...

  8. 《深入探索Netty原理及源码分析》文集小结

    <深入探索Netty原理及源码分析>文集小结 https://www.jianshu.com/p/239a196152de

  9. HashMap实现原理及源码分析之JDK8

    继续上回HashMap的学习 HashMap实现原理及源码分析之JDK7 转载 Java8源码-HashMap  基于JDK8的HashMap源码解析  [jdk1.8]HashMap源码分析 一.H ...

随机推荐

  1. JDBC基础学习(五)—批处理插入数据

    一.批处理介绍      当需要成批插入或者更新记录时.可以采用Java的批量更新机制,这一机制允许多条语句一次性提交给数据库批量处理.通常情况下比单独提交处理更有效率. JDBC的批量处理语句包括下 ...

  2. PHP初学者如何搭建环境,并在本地服务器(or云端服务器)运行自己的第一个PHP样例

    页面底部有PHP代码样例供测试使用. 1.PHP开发,你需要什么? 1)开发代码的工具,可以用IDE名字叫做phpDesigner.当然也可以临时用记事本代替,记得文件扩展名为.php 2)服务器(本 ...

  3. win10 如何配置 java jdk1.8环境变量(2017.2.24)

    win10 如何配置 java jdk 环境变量 这里的win10 为全新安装的系统 一.安装 下载 jdk 64位 windows 版本安装(默认安装) 默认安装的路径: C:\Program Fi ...

  4. 如何使用第三方webservice

    webservice地址后加wdls 生成后把文件名改为wdsl 调用方式: 1.添加webservice引用: 2.生成代理类的方法(本人比较喜欢用这种方式): 使用cmd命令行: a.通过webs ...

  5. 关于使用ModelSim中编写testbench模板问题

    对于初学者来说写Testbench测试文件还是比较困难的,但Modelsim和quartus ii都提供了模板,下面就如何使用Modelsim提供的模板进行操作. Modelsim提供了很多Testb ...

  6. CSS开发框架技术OOCSS编写和管理CSS的方法

    目前最流行的CSS开发框架技术当属OOCSS,尽管还有其他类似技术(如BEM).这些方法试图对CSS采用面向对象的编程原则.样式语言与面向对象的设计原则在概念之间存在一定的问题.欠缺经验的人员可能不会 ...

  7. 在 Intellij 中设置集成 Jenkins 服务器连接

    如何在 Intellij 中设置集成 Jenkins 服务器连接 在Intellij中可以很方便的设置Jenkins服务器,不用登录到浏览器中,在Intellij中即可浏览所有job,开发plugin ...

  8. 浅谈聚类算法(K-means)

    聚类算法(K-means)目的是将n个对象根据它们各自属性分成k个不同的簇,使得簇内各个对象的相似度尽可能高,而各簇之间的相似度尽量小. 而如何评测相似度呢,采用的准则函数是误差平方和(因此也叫K-均 ...

  9. 修改linux系统时间和同步

    date 查看当前时间 date -s 15:14:13 修改时间 cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime 修改时区 yes cront ...

  10. CentOS 下PHP的卸载

    一.卸载1.使用命令 rpm -qa|grep 列出需要卸载的软件包rpm -qa|grep php使用rpm -e 加包名rpm -e php-4.3.9-3.15 二.安装1.首先更新系统yum  ...