In 2.6.x, there are 3 mechanisms for implementing a bottom half: softirqs, tasklets and work queues. Here's the comparison:


Softirqs:

  Softirqs are statically allocated at compile time. It is represented by the softirq_action structure, which is defined in <linux/interrupt.h>:

struct softirq_action {
void (*action)(struct softirq_action *);
}

  A 32-entry array of this structure is declared in kernel/softirq.c:

static struct softirq_action softirq_vec[NR_SOFTIRQS];

  But in the current kernel, only nine exist:(as we will discuss later, tasklets are built off softirqs)

  The prototype of a softirq handler looks like

void softirq_handler(struct softirq_action *)

  A softirq never preempts another softirq. The only event that can preempt a softirq is an interrupt handler.

Executing Softirqs:

  A registered softirq must be marked before it will execute. This is called raising the softirq.

  Softirq execution occurs in __do_softirq(), which is invoked by do_softirq(). If there are pending softirqs, __do_softirq() loops over each one, invoking its handler. Let's look at a simplified variant of the important part of __do_softirq():

u32 pending;

pending = local_softirq_pending();
if (pending) {
struct softirq_action *h; /* reset the pending bitmask */
set_softirq_pending(); h = softirq_vec;
do {
if (pending & )
h->action(h);
h++;
pending >>= ;
} while (pending);
}

Using Softirqs:

  Softirqs are reserved for the most timing-critical and important bottom-half processing on the system.  Currently, only two subsystems - networking and block devices - directly use softirqs.

  Registering Your Handler:

  The softirq handler is registered at run-time via open_softirq():

/* in net/core/dev.c */
/* two parameters: the sfotirq's index and its handler function */
open_softirq(NET_TX_SOFTIRQ, net_tx_action);

  Raising Your Softirq:

  To mark it pending, call raise_softirq():    

raise_softirq(NET_TX_SOFTIRQ);

  Then it is run at the next invocation of do_softirq().

asmlinkage void do_softirq(void)
{
__u32 pending;
unsigned long flags; if (in_interrupt())
return; local_irq_save(flags); pending = local_softirq_pending(); if (pending)
__do_softirq(); local_irq_restore(flags);
}

  I have a look at __do_softirq() and I think it's too long to show here, so I just pass it :)

  In general, pending softirqs are checked for and executed in the following places:

    In the return from hardware interrupt code path;

    In the ksoftirqd kernel thread;

    In any code that explicitly checks for and executes pending softirqs, such as the networking subsystem.


Tasklets:

  Tasklets are built on top of softirqs and it's more popular. The difference is that two of the same type of tasklet cannot run simultaneously on different processors but softirqs can.

  As discussed, tasklets are represented by two softirqs: HI_SOFTIRQ and TASKLET_SOFTIRQ.

  The tasklet sturcture is declared in <linux/interrupt.h>:

struct tasklet_struct {
struct tasklet_struct *next;
unsigned long state;
atomic_t count;
void (*func)(unsigned long); /* tasklet handler function */
unsigned long data; /* argument to the tasklet function */
};

Schedulling Tasklets:

  Tasklets are scheduled via the tasklet_schedule() and tasklet_hi_schedule()(for high-priority tasklets):

static inline vid tasklet_schedule(struct tasklet_struct *t)
{
if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state))
__tasklet_schedule(t);
}

  Here's the __tasklet_schedule():

void __tasklet_schedule(struct tasklet_struct *t)
{
unsigned long flags; /* save the state of interrupt system, and then disable local interrupts. */
local_irq_save(flags);
t->next = NULL;
/* add the tasklet to be scheduled to the tail of the tasklet_vec linked list */
*__get_cpu_var(tasklet_vec).tail = t;
__get_cpu_var(tasklet-vec).tail = &(t->next);
/* raise the TASKLET_SOFTIRQ, so do_softirq() executes this tasklet in the near future */
local_irq_restore(flags);
}

  Then the do_softirq() will execute the associated handlers tasklet_action() soon.  

 ksoftirqd:

  Softirq (and thus tasklet) processing is aided by a set of per-processor kernel threads. The kernel processes softirqs most commonly on return from handling an interrupt.

  There is one thread per processor. The threads are each named ksoftirqd/n where n is the processor number.


Work Queue:

  Work queues defer work into a kernel thread - this bottom half always runs in process context. Therefore, work queues are schedulable and can therefore sleep.

  In its most basic form, the work queue subsystem is an interface fro creating kernel threads, which are called worker threads, to handle work queued from elsewhere.

  The default worker threads are called events/n where n is the processor number.

LKD: Chapter 8 Bottom Halves and Deferring Work的更多相关文章

  1. LKD: Chapter 7 Interrupts and Interrupt Handlers

    Recently I realized my English is still far from good. So in order to improve my English, I must not ...

  2. LKD: Chapter 9 An Introduction to Kernel Synchronization

    This chapter introduces some conception about kernel synchronization generally. Critical Regions: Co ...

  3. LKD: Chapter 6 Kernel Data Structures

    这一章我们研究四种主要的数据结构: linked lists, queues, maps, binary trees. Linked Lists:(<linux/list.h>) 在lin ...

  4. LKD: Chapter 5 System Call

    在Linux中,处理器所作的事可以归纳为3种情况: 1.In user-space, executing user code in a process; 2.In kernel-space, in p ...

  5. linux内核申请内存函数

    kmap函数:    把某块高端内存映射到页表,然后返回给用户一个填好vitual字段的page结构    建立永久地址映射,不是简单的返回virtual字段的pageioremap:    驱动程序 ...

  6. kernel笔记——中断

    cpu与磁盘.网卡.键盘等外围设备(相对于cpu和内存而言)交互时,cpu下发I/O请求到这些设备后,相对cpu的处理能力而言,磁盘.网卡等设备需要较长时间完成请求处理. 那么在请求发出到处理完成这段 ...

  7. linux工作队列

    工作队列一般用来做滞后的工作,比如在中断里面要做很多事,但是比较耗时,这时就可以把耗时的工作放到工作队列.说白了就是系统延时调度的一个自定义函数. 工作队列是实现延迟的新机制,从 2.5 版本 Lin ...

  8. 软中断与硬中断 & 中断抢占 中断嵌套

    参考了这篇文章:http://blog.csdn.net/zhangskd/article/details/21992933 从本质上来讲,中断是一种电信号,当设备有某种事件发生时,它就会产生中断,通 ...

  9. 专家解读Linux操作系统内核中的GCC特性

    专家解读Linux操作系统内核中的GCC特性   Linux内核使用GNU Compiler Collection (GCC)套件的几个特殊功能.这些功能包括提供快捷方式和简化以及向编译器提供优化提示 ...

随机推荐

  1. riot.js教程【二】组件撰写准则、预处理器、标签样式和装配方法

    基本要求 一个riot标签,就是展现和逻辑的组合(也就是html和JS): 以下是编写riot标签最基本的规则: 先撰写HTML,再撰写JS,JS代码可以写在<script>标签内部,但这 ...

  2. 【特效】单选按钮和复选框的美化(只用css)

    表单的默认样式都是比较朴素的,实际页面中往往需要美化他们.这里先说说单选按钮和复选框,有了css3,这个问题就变的好解决了.利用input与label相关联,对label进行美化并使其覆盖掉原本的in ...

  3. MIRO做发票校验时实现替代功能的多种方式

    http://blog.sina.com.cn/s/blog_3f2c03e30100ngje.html MIRO做发票校验时,如果需要对产生的会计凭证做某些字段的替代,可有多种方法. 1.GGB1替 ...

  4. [bzoj2131]免费的馅饼 树状数组优化dp

    2131: 免费的馅饼 Time Limit: 10 Sec  Memory Limit: 259 MB[Submit][Status][Discuss] Description Input 第一行是 ...

  5. 【NOIP2016 Day1 T2】天天爱跑步

    题目传送门:https://www.luogu.org/problemnew/show/P1600 感觉这两天在处理边界问题上有点神志不清......为了从80的暴力变成100,花了整整一个下午+一个 ...

  6. Python实现正交实验法自动设计测试用例

    1.简介 正交试验法是研究多因素.多水平的一种试验法,它是利用正交表来对试验进行设计,通过少数的试验替代全面试验,根据正交表的正交性从全面试验中挑选适量的.有代表性的点进行试验,这些有代表性的点具备了 ...

  7. (转)IDEA破解 2017 IDEA license server 激活(可用)

    进入ide主页面,help-register-license server,然后输入 http://idea.iteblog.com/key.PHP(注意:php要小写)即可~

  8. 移动端二三事【三】:transform的注意事项

    1.js操作transition时需使用驼峰命名: div.style.WebkitTransform = div.style.transform = "rotate(90deg)" ...

  9. poj 2566 Bound Found

    Bound Found Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4384   Accepted: 1377   Spe ...

  10. You can Solve a Geometry Problem too(判断两线段是否相交)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...