LKD: Chapter 8 Bottom Halves and Deferring Work
In 2.6.x, there are 3 mechanisms for implementing a bottom half: softirqs, tasklets and work queues. Here's the comparison:

Softirqs:
Softirqs are statically allocated at compile time. It is represented by the softirq_action structure, which is defined in <linux/interrupt.h>:
struct softirq_action {
void (*action)(struct softirq_action *);
}
A 32-entry array of this structure is declared in kernel/softirq.c:
static struct softirq_action softirq_vec[NR_SOFTIRQS];
But in the current kernel, only nine exist:(as we will discuss later, tasklets are built off softirqs)

The prototype of a softirq handler looks like
void softirq_handler(struct softirq_action *)
A softirq never preempts another softirq. The only event that can preempt a softirq is an interrupt handler.
Executing Softirqs:
A registered softirq must be marked before it will execute. This is called raising the softirq.
Softirq execution occurs in __do_softirq(), which is invoked by do_softirq(). If there are pending softirqs, __do_softirq() loops over each one, invoking its handler. Let's look at a simplified variant of the important part of __do_softirq():
u32 pending; pending = local_softirq_pending();
if (pending) {
struct softirq_action *h; /* reset the pending bitmask */
set_softirq_pending(); h = softirq_vec;
do {
if (pending & )
h->action(h);
h++;
pending >>= ;
} while (pending);
}
Using Softirqs:
Softirqs are reserved for the most timing-critical and important bottom-half processing on the system. Currently, only two subsystems - networking and block devices - directly use softirqs.
Registering Your Handler:
The softirq handler is registered at run-time via open_softirq():
/* in net/core/dev.c */
/* two parameters: the sfotirq's index and its handler function */
open_softirq(NET_TX_SOFTIRQ, net_tx_action);
Raising Your Softirq:
To mark it pending, call raise_softirq():
raise_softirq(NET_TX_SOFTIRQ);
Then it is run at the next invocation of do_softirq().
asmlinkage void do_softirq(void)
{
__u32 pending;
unsigned long flags; if (in_interrupt())
return; local_irq_save(flags); pending = local_softirq_pending(); if (pending)
__do_softirq(); local_irq_restore(flags);
}
I have a look at __do_softirq() and I think it's too long to show here, so I just pass it :)
In general, pending softirqs are checked for and executed in the following places:
In the return from hardware interrupt code path;
In the ksoftirqd kernel thread;
In any code that explicitly checks for and executes pending softirqs, such as the networking subsystem.
Tasklets:
Tasklets are built on top of softirqs and it's more popular. The difference is that two of the same type of tasklet cannot run simultaneously on different processors but softirqs can.
As discussed, tasklets are represented by two softirqs: HI_SOFTIRQ and TASKLET_SOFTIRQ.
The tasklet sturcture is declared in <linux/interrupt.h>:
struct tasklet_struct {
struct tasklet_struct *next;
unsigned long state;
atomic_t count;
void (*func)(unsigned long); /* tasklet handler function */
unsigned long data; /* argument to the tasklet function */
};
Schedulling Tasklets:
Tasklets are scheduled via the tasklet_schedule() and tasklet_hi_schedule()(for high-priority tasklets):
static inline vid tasklet_schedule(struct tasklet_struct *t)
{
if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state))
__tasklet_schedule(t);
}
Here's the __tasklet_schedule():
void __tasklet_schedule(struct tasklet_struct *t)
{
unsigned long flags; /* save the state of interrupt system, and then disable local interrupts. */
local_irq_save(flags);
t->next = NULL;
/* add the tasklet to be scheduled to the tail of the tasklet_vec linked list */
*__get_cpu_var(tasklet_vec).tail = t;
__get_cpu_var(tasklet-vec).tail = &(t->next);
/* raise the TASKLET_SOFTIRQ, so do_softirq() executes this tasklet in the near future */
local_irq_restore(flags);
}
Then the do_softirq() will execute the associated handlers tasklet_action() soon.
ksoftirqd:
Softirq (and thus tasklet) processing is aided by a set of per-processor kernel threads. The kernel processes softirqs most commonly on return from handling an interrupt.
There is one thread per processor. The threads are each named ksoftirqd/n where n is the processor number.
Work Queue:
Work queues defer work into a kernel thread - this bottom half always runs in process context. Therefore, work queues are schedulable and can therefore sleep.
In its most basic form, the work queue subsystem is an interface fro creating kernel threads, which are called worker threads, to handle work queued from elsewhere.
The default worker threads are called events/n where n is the processor number.
LKD: Chapter 8 Bottom Halves and Deferring Work的更多相关文章
- LKD: Chapter 7 Interrupts and Interrupt Handlers
Recently I realized my English is still far from good. So in order to improve my English, I must not ...
- LKD: Chapter 9 An Introduction to Kernel Synchronization
This chapter introduces some conception about kernel synchronization generally. Critical Regions: Co ...
- LKD: Chapter 6 Kernel Data Structures
这一章我们研究四种主要的数据结构: linked lists, queues, maps, binary trees. Linked Lists:(<linux/list.h>) 在lin ...
- LKD: Chapter 5 System Call
在Linux中,处理器所作的事可以归纳为3种情况: 1.In user-space, executing user code in a process; 2.In kernel-space, in p ...
- linux内核申请内存函数
kmap函数: 把某块高端内存映射到页表,然后返回给用户一个填好vitual字段的page结构 建立永久地址映射,不是简单的返回virtual字段的pageioremap: 驱动程序 ...
- kernel笔记——中断
cpu与磁盘.网卡.键盘等外围设备(相对于cpu和内存而言)交互时,cpu下发I/O请求到这些设备后,相对cpu的处理能力而言,磁盘.网卡等设备需要较长时间完成请求处理. 那么在请求发出到处理完成这段 ...
- linux工作队列
工作队列一般用来做滞后的工作,比如在中断里面要做很多事,但是比较耗时,这时就可以把耗时的工作放到工作队列.说白了就是系统延时调度的一个自定义函数. 工作队列是实现延迟的新机制,从 2.5 版本 Lin ...
- 软中断与硬中断 & 中断抢占 中断嵌套
参考了这篇文章:http://blog.csdn.net/zhangskd/article/details/21992933 从本质上来讲,中断是一种电信号,当设备有某种事件发生时,它就会产生中断,通 ...
- 专家解读Linux操作系统内核中的GCC特性
专家解读Linux操作系统内核中的GCC特性 Linux内核使用GNU Compiler Collection (GCC)套件的几个特殊功能.这些功能包括提供快捷方式和简化以及向编译器提供优化提示 ...
随机推荐
- akka源码导读
akka的actor模型提供了强大的并发,本人就akka源码进行了详细的阅读,下面是一些体会. 1.object SystemMessageList: @tailrec private[sysmsg] ...
- C语言指针的那些坑
那些年把我们坑惨的指针 一.引言 当我们使用c语言的时候,不可避免的就得用到指针,然后对于刚刚接触C语言的猿兄们,可能会有点不适应,特别是刚刚从python等离硬件很远的语言转过来的. 下面我为大家总 ...
- mysql 外键的几种约束
restrict方式 同no action, 都是立即检查外键约束 --限制,指的是如果字表引用父表的某个字段的值,那么不允许直接删除父表的该值: cascade方式 在父表上update/de ...
- python的小基础
变量python中的变量为指向常量的地址当常量没有指向时,系统自动回收内存空间如A = 1B = AA = 2print(A,B)#2,1id(A),id(B)id()为python虚拟机的虚拟地址, ...
- Jenkins集成taffy进行自动化测试并输出测试报告
本文主要介绍Jenkins集成taffy/nose框架进行自动化测试并输出测试报告方法. 0. 测试环境 Jenkis主节点部署在CentOS系统上,子节点为Win10 64位系统(即我们本机运行自动 ...
- 转载——yum源的超级简单配置
1.先挂载光盘. 使用命令"mount -o loop /dev/sr0 /mnt/cdrom".如果使用命令"mount -o loop /dev/cdrom ...
- Lua函数以及闭合函数的理解
Lua函数以及闭合函数的理解 来源 http://blog.csdn.net/mydad353193052/article/details/48731467 词法域和第一类型 在C/C++,C#或者J ...
- 通过对DAO层的封装减少数据库操作的代码量
在学框架之前,写项目时总是要花大量的时间去写数据库操作层代码,这样会大大降低我们的效率,为了解决这个问题,我花了两天时间利用反射机制和泛型将DAO层进行了封装,这样我们只需要写sql语句,不需要再写 ...
- Equations
Equations Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- CUDA C Best Practices Guide 在线教程学习笔记 Part 2
10. 执行配置优化 ● 一个 SM中,占用率 = 活动线程束的数量 / 最大可能活动线程束的数量.后者保存在设备属性的 maxThreadsPerMultiProcessor 分量中(GTX10 ...