In 2.6.x, there are 3 mechanisms for implementing a bottom half: softirqs, tasklets and work queues. Here's the comparison:


Softirqs:

  Softirqs are statically allocated at compile time. It is represented by the softirq_action structure, which is defined in <linux/interrupt.h>:

struct softirq_action {
void (*action)(struct softirq_action *);
}

  A 32-entry array of this structure is declared in kernel/softirq.c:

static struct softirq_action softirq_vec[NR_SOFTIRQS];

  But in the current kernel, only nine exist:(as we will discuss later, tasklets are built off softirqs)

  The prototype of a softirq handler looks like

void softirq_handler(struct softirq_action *)

  A softirq never preempts another softirq. The only event that can preempt a softirq is an interrupt handler.

Executing Softirqs:

  A registered softirq must be marked before it will execute. This is called raising the softirq.

  Softirq execution occurs in __do_softirq(), which is invoked by do_softirq(). If there are pending softirqs, __do_softirq() loops over each one, invoking its handler. Let's look at a simplified variant of the important part of __do_softirq():

u32 pending;

pending = local_softirq_pending();
if (pending) {
struct softirq_action *h; /* reset the pending bitmask */
set_softirq_pending(); h = softirq_vec;
do {
if (pending & )
h->action(h);
h++;
pending >>= ;
} while (pending);
}

Using Softirqs:

  Softirqs are reserved for the most timing-critical and important bottom-half processing on the system.  Currently, only two subsystems - networking and block devices - directly use softirqs.

  Registering Your Handler:

  The softirq handler is registered at run-time via open_softirq():

/* in net/core/dev.c */
/* two parameters: the sfotirq's index and its handler function */
open_softirq(NET_TX_SOFTIRQ, net_tx_action);

  Raising Your Softirq:

  To mark it pending, call raise_softirq():    

raise_softirq(NET_TX_SOFTIRQ);

  Then it is run at the next invocation of do_softirq().

asmlinkage void do_softirq(void)
{
__u32 pending;
unsigned long flags; if (in_interrupt())
return; local_irq_save(flags); pending = local_softirq_pending(); if (pending)
__do_softirq(); local_irq_restore(flags);
}

  I have a look at __do_softirq() and I think it's too long to show here, so I just pass it :)

  In general, pending softirqs are checked for and executed in the following places:

    In the return from hardware interrupt code path;

    In the ksoftirqd kernel thread;

    In any code that explicitly checks for and executes pending softirqs, such as the networking subsystem.


Tasklets:

  Tasklets are built on top of softirqs and it's more popular. The difference is that two of the same type of tasklet cannot run simultaneously on different processors but softirqs can.

  As discussed, tasklets are represented by two softirqs: HI_SOFTIRQ and TASKLET_SOFTIRQ.

  The tasklet sturcture is declared in <linux/interrupt.h>:

struct tasklet_struct {
struct tasklet_struct *next;
unsigned long state;
atomic_t count;
void (*func)(unsigned long); /* tasklet handler function */
unsigned long data; /* argument to the tasklet function */
};

Schedulling Tasklets:

  Tasklets are scheduled via the tasklet_schedule() and tasklet_hi_schedule()(for high-priority tasklets):

static inline vid tasklet_schedule(struct tasklet_struct *t)
{
if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state))
__tasklet_schedule(t);
}

  Here's the __tasklet_schedule():

void __tasklet_schedule(struct tasklet_struct *t)
{
unsigned long flags; /* save the state of interrupt system, and then disable local interrupts. */
local_irq_save(flags);
t->next = NULL;
/* add the tasklet to be scheduled to the tail of the tasklet_vec linked list */
*__get_cpu_var(tasklet_vec).tail = t;
__get_cpu_var(tasklet-vec).tail = &(t->next);
/* raise the TASKLET_SOFTIRQ, so do_softirq() executes this tasklet in the near future */
local_irq_restore(flags);
}

  Then the do_softirq() will execute the associated handlers tasklet_action() soon.  

 ksoftirqd:

  Softirq (and thus tasklet) processing is aided by a set of per-processor kernel threads. The kernel processes softirqs most commonly on return from handling an interrupt.

  There is one thread per processor. The threads are each named ksoftirqd/n where n is the processor number.


Work Queue:

  Work queues defer work into a kernel thread - this bottom half always runs in process context. Therefore, work queues are schedulable and can therefore sleep.

  In its most basic form, the work queue subsystem is an interface fro creating kernel threads, which are called worker threads, to handle work queued from elsewhere.

  The default worker threads are called events/n where n is the processor number.

LKD: Chapter 8 Bottom Halves and Deferring Work的更多相关文章

  1. LKD: Chapter 7 Interrupts and Interrupt Handlers

    Recently I realized my English is still far from good. So in order to improve my English, I must not ...

  2. LKD: Chapter 9 An Introduction to Kernel Synchronization

    This chapter introduces some conception about kernel synchronization generally. Critical Regions: Co ...

  3. LKD: Chapter 6 Kernel Data Structures

    这一章我们研究四种主要的数据结构: linked lists, queues, maps, binary trees. Linked Lists:(<linux/list.h>) 在lin ...

  4. LKD: Chapter 5 System Call

    在Linux中,处理器所作的事可以归纳为3种情况: 1.In user-space, executing user code in a process; 2.In kernel-space, in p ...

  5. linux内核申请内存函数

    kmap函数:    把某块高端内存映射到页表,然后返回给用户一个填好vitual字段的page结构    建立永久地址映射,不是简单的返回virtual字段的pageioremap:    驱动程序 ...

  6. kernel笔记——中断

    cpu与磁盘.网卡.键盘等外围设备(相对于cpu和内存而言)交互时,cpu下发I/O请求到这些设备后,相对cpu的处理能力而言,磁盘.网卡等设备需要较长时间完成请求处理. 那么在请求发出到处理完成这段 ...

  7. linux工作队列

    工作队列一般用来做滞后的工作,比如在中断里面要做很多事,但是比较耗时,这时就可以把耗时的工作放到工作队列.说白了就是系统延时调度的一个自定义函数. 工作队列是实现延迟的新机制,从 2.5 版本 Lin ...

  8. 软中断与硬中断 & 中断抢占 中断嵌套

    参考了这篇文章:http://blog.csdn.net/zhangskd/article/details/21992933 从本质上来讲,中断是一种电信号,当设备有某种事件发生时,它就会产生中断,通 ...

  9. 专家解读Linux操作系统内核中的GCC特性

    专家解读Linux操作系统内核中的GCC特性   Linux内核使用GNU Compiler Collection (GCC)套件的几个特殊功能.这些功能包括提供快捷方式和简化以及向编译器提供优化提示 ...

随机推荐

  1. ABAP 数值四舍五入函数

    VALUE '12.5445' , dat1 . VALUE '12.540'. * 方法一 CALL FUNCTION 'HR_NZ_ROUNDING_DECIMALS' EXPORTING val ...

  2. Appium python自动化测试系列之移动自动化测试前提(一)

    1.1 移动自动化测试现状 因为软件行业越来越发达,用户的接受度也在不断提高,所以对软件质量的要求也随之提高,当然这个也要分行业,但这个还是包含了大部分.因为成本.质量的变化现在对自动化测试的重视度越 ...

  3. Java多线程——创建线程的两种方式

    创建线程方式一:继承Thread类. 步骤:1,定义一个类继承Thread类.2,覆盖Thread类中的run方法.3,直接创建Thread的子类对象创建线程.4,调用start方法开启线程并调用线程 ...

  4. Vuex state 状态浅解

    对于Vuex中的state里面的理解总是有些欠缺,机制似乎理解了.但是还有很多的不足,在这就先浅谈下自己的理解. vuex 机制中,定义了全局Store,在各个vue组件面的this.$store指向 ...

  5. 【转】C缺陷和陷阱学习笔记

    http://www.cnblogs.com/hbiner/p/3591335.html?utm_source=tuicool&utm_medium=referral 这段时间把<C陷阱 ...

  6. 使用bitset实现毫秒级查询

    前言 因为业务要求api的一次请求响应时间在10ms以内,所以传统的数据库查询操作直接被排除(网络io和磁盘io).通过调研,最终使用了bieset,目前已经正常运行了很久 *** bitset介绍 ...

  7. Tomcat 笔记-配置域名

    编辑/etc/hosts文件,添加域名: 127.0.0.1 localhost 127.0.1.1 ubuntu # The following lines are desirable for IP ...

  8. dubbo 笔记-XML配置文件简介

    <dubbo:service/> 服务配置,用于暴露一个服务,定义服务的元信息,一个服务可以用多个协议暴露,一个服务也可以注册到多个注册中心. eg.<dubbo:service r ...

  9. Xcode9 FFmpeg冲突问题

    升级Xcode9之后,工程中FFmpeg中的avutil.h下的AVMediaType与系统的AVFoundation框架冲突了. 报错信息:Typedef 'AVMediaType' cannot ...

  10. Debian GNU/Linux 8.4 (jessie)编译安装php.md

    编译遇到的问题很多.网上的文章往往是记录遇到的报错,贴上对应的解决. 而实际的环境,如操作系统,安装的软件必然有差异,所以,更重要的是,如何找到解决方法(不担保按步骤做可以编译成功),并将过程自动化. ...