Open-source software is awesome. If I found that a piece of closed-source software was missing a feature that I wanted, well, bad luck. I probably couldn't even tell if was actually missing or if I just didn't know about it. When the source is available, maintained, and documented however, things get fun. We can identify, and perhaps fill gaps.

I've thought for a couple of projects which had bar-graphs that it would be neat to have the categories labelled by an icon or a picture. Say, the logo for a company or an illustrative example. Sure, you could fire up GIMP/Inkscape and manually insert them over the top of the text labels (each and every time you re-produce the graph... no thanks) but that's not how I operate.

There are probably very few cases for which this is technically a good idea (trying to be a featured author on JunkCharts might very well be one of those reasons). Nonetheless, there are at least a couple of requests for this floating around on stackoverflow; here and here for example. I struggled to find any satisfactory solutions that were in current working order (though perhaps my Google-fu has failed me).

The second link there has a working example, but the big update to ggplot2 breaks that pretty strongly; opts was deprecated and now element_text() has a gatekeeper validation routine that prevents any such messing around. The first link however takes a different route. I couldn't get that one to work either, but in any case the answer is a year out of date (updates in ggplot2can easily have broken the gTree relations), not particularly flexible, and relies on saving intermittent image files for PostScriptTrace to read back in which I'm not a fan of (and couldn't get to work anyway).

I decided that I perhaps had enough ammunition to hack something together myself (emphasis on hack), and sure enough it seems to have worked (for a limited definition of "worked" with no attached or implied guarantees whatsoever).

GDP per capita with flags for x-axis labels. This was harder to make than it seemed, but I've since added a little more flexibility to it.

The way to go about making your own is as follows;

    1. Stop and carefully re-evaluate the choices that you've made to bring you to this decision. Are you sure? Okay...
    2. Save the images (in the correct factor order) into a list (e.g. pics).
    3. Build your bar graph with categorical x-axis as per normal, using theme() to remove the labels. Save as an object (e.g. g).
    4. Source the function from this gist (at your own risk... copy and paste if you prefer):
devtools::source_gist("1d1bdb00a7b3910d62bf3eec8a77b4a7")
  #' Replace categorical x-axis labels with images
  #'
  #' Pipe a ggplot2 graph (with categorical x-axis) into this function with the argument of a list of
  #' pictures (e.g. loaded via readImage) and it builds a new grob with the x-axis categories
  #' now labelled by the images. Solves a problem that you perhaps shouldn't have.
  #'
  #' @author J. Carroll, \email{jono@@jcarroll.com.au}
  #' @references \url{http://stackoverflow.com/questions/29939447/icons-as-x-axis-labels-in-r-ggplot2}
  #'
  #' @param g ggplot graph with categorical x axis
  #' @param pics ordered list of pictures to place along x-axis
  #'
  #' @return NULL (called for the side-effect of producing a new grob with images for x-axis labels)
  #'
  #' @import grid
  #' @import ggplot2
  #'
  #' @export
  #'
  #' @example
  #' \dontrun{ggplot(data, aes(x=factor(x),y=y)) + geom_point() %>% add_images_as_xlabels(pics)}
  #'
  add_images_as_xlabels <- function(g, pics) {
   
  ## ensure that the input is a ggplot
  if(!inherits(g, "ggplot")) stop("Requires a valid ggplot to attach images to.")
   
  ## extract the components of the ggplot
  gb <- ggplot_build(gg)
  xpos <- gb$panel$ranges[[1]]$x.major
  yrng <- gb$panel$ranges[[1]]$y.range
   
  ## ensure that the number of pictures to use for labels
  ## matches the number of x categories
  if(length(xpos) != length(pics)) stop("Detected a different number of pictures to x categories")
   
  ## create a new grob of the images aligned to the x-axis
  ## at the categorical x positions
  my_g <- do.call("grobTree", Map(rasterGrob, pics, x=xpos, y=0))
   
  ## annotate the original ggplot with the new grob
  gg <- gg + annotation_custom(my_g,
  xmin = -Inf,
  xmax = Inf,
  ymax = yrng[1] + 0.25*(yrng[2]-yrng[1])/npoints,
  ymin = yrng[1] - 0.50*(yrng[2]-yrng[1])/npoints)
   
  ## turn off clipping to allow plotting outside of the plot area
  gg2 <- ggplotGrob(gg)
  gg2$layout$clip[gg2$layout$name=="panel"] <- "off"
   
  ## produce the final, combined grob
  grid.newpage()
  grid.draw(gg2)
   
  return(invisible(NULL))
   
  }
 
    1. Call (or pipe your ggplot object to) the function:
g %>% add_images_as_xlabels(pics)
 
## or
 
add_images_as_xlabels(g, pics)
  1. Your image will be re-drawn with your pictures labelling the categories.

Here's an example of the code used to generate the GDP per capita image, featuring some fairly brief (for what it does) rvest scraping (to reiterate; I don't want to have to do any of this by hand, so let's code it up!).

  library(rvest)
   
  ## GDP per capita, top 10 countries
  url <- "https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)_per_capita"
  html <- read_html(url)
  gdppc <- html_table(html_nodes(html, "table")[3])[[1]][1:10,]
   
  ## clean up; remove non-ASCII and perform type conversions
  gdppc$Country <- gsub("Â ", "", gdppc$Country)
  gdppc$Rank <- iconv(gdppc$Rank, "latin1", "ASCII", sub="")
  gdppc$Country <- iconv(gdppc$Country, "latin1", "ASCII", sub="")
  gdppc$`US$` <- as.integer(sub(",", "", gdppc$`US$`))
   
  ## flag images (yes, this processing could be done neater, I'm sure)
  ## get the 200px versions
  flags_img <- html_nodes(html_nodes(html, "table")[3][[1]], "img")[1:10]
  flags_url <- paste0('http://', sub('[0-9]*px', '200px', sub('\\".*$', '', sub('^.*src=\\"//', '', flags_img))))
  flags_name <- sub('.*(Flag_of)', '\\1', flags_url)
   
  if(!dir.exists("flags")) dir.create("flags")
  for(flag in seq_along(flags_url)) {
  switch(Sys.info()[['sysname']],
  Windows= {download.file(flags_url[flag], destfile=file.path("flags", paste0(flag,"_", flags_name[flag])), method="auto", mode="wb")},
  Linux = {download.file(flags_url[flag], destfile=file.path("flags", paste0(flag,"_", flags_name[flag])))},
  Darwin = {print("Not tested on Mac. Use one of the above and find out?")})
  }
   
  library(EBImage) ## readImage
  library(dplyr) ## %>%
  library(ggplot2) ## devtools::install_github("hadley/ggplot2)
  library(grid) ## rasterGrob
  library(ggthemes) ## theme_minimal
  library(scales) ## comma
   
  ## create a dummy dataset
  npoints <- length(flags_name)
  y <- gdppc$`US$`
  x <- seq(npoints)
  dat <- data.frame(x=factor(x), y=y)
   
  ## load the images from filenames
  ## one day I'll remember to make these sorted on save
  pics <- vector(mode="list", length=npoints)
  image.file <- dir("flags", full.names=TRUE)
  image.file <- image.file[order(as.integer(sub("_.*", "", sub("flags/", "", image.file))))]
   
  ## save the images into a list
  for(i in 1:npoints) {
  pics[[i]] <- EBImage::readImage(image.file[i])
  }
   
  ## create the graph, as per normal
  ## NB: #85bb65 is the color of money in the USA apparently.
  gg <- ggplot(dat, aes(x=x, y=y/1e3L, group=1))
  gg <- gg + geom_bar(col="black", fill="#85bb65", stat="identity")
  gg <- gg + scale_x_discrete()
  gg <- gg + theme_minimal()
  gg <- gg + theme(plot.margin = unit(c(0.5,0.5,5,0.5), "lines"),
  axis.text.x = element_blank(),
  axis.text.y = element_text(size=14))
  gg <- gg + scale_fill_discrete(guide=FALSE)
  gg <- gg + theme(plot.background = element_rect(fill="grey90"))
  gg <- gg + labs(title="GDP per Capita", subtitle=paste0("Top 10 countries\n(", url, ")"), x="", y="$US/1000")
  gg
   
  ## insert imags (pics) as x-axis labels
  ## well, at least appear to do so
  gg %>% add_images_as_xlabels(pics)
view rawGDP_per_capita.R hosted with  by GitHub
 

At least a few caveats surround what I did manage to get working, including but not limited to:

  • I'm not sure how to put the x-axis title back in at the right position without padding it with a lot of linebreaks ("\n\n\n\nX-AXIS TITLE").
  • I'm not sure how to move the caption line from labs() (assuming you're using the development version of ggplot2 on GitHub with @hrbrmstr's excellent annotation additions) so it potentially gets drawn over.
  • The spacing below the graph is currently arbitrarily set to a few lines more than necessary, but it's a compromise in having an arbitrary number of images loaded at their correct sizes.
  • Similarly, I've just expanded the plot range of the original graph by a seemingly okay amount which has worked for the few examples I've tried.
  • Using a graph like this places the onus of domain knowledge onto the reader; if you don't know what those flags refer to then this graph is less useful than one with the countries labelled with words. Prettier though.

I've no doubt that there must be a better way to do this, but it's beyond my understanding of how ggproto works, and I can't seem to bypass element_text's requirements with what I do know. If you would like to help develop this into something more robust then I'm most interested. Given that it's a single function I wasn't going to create a package just for this, but I'm willing to help incorporate it into someone's existing package. Hit the comments or ping me on Twitter (@carroll_jono)!

转自:http://jcarroll.com.au/2016/06/02/images-as-x-axis-labels/

Images as x-axis labels的更多相关文章

  1. Axis.Labels.CustomSize

    tChart1.Axes.Bottom.Labels.CustomSize = ; //Changes spacing occupied by the axis labels between the ...

  2. 3D Slicer Hide 3D Cube and Axis Labels Programmatically 使用代码隐藏三维视图中的方框和坐标轴标签

    在3D Slicer中,我们如果想在自己写的插件中来修改三维视图中的默认设置的话,那么首先就需要获得三维视图的结点,其类型为vtkMRMLViewNode,获得了这个结点后,我们就可以用代码来修改一系 ...

  3. TeeChart中Axis的CalcIncrement属性

    private void Init() { tChart = new TChart(); panel1.Controls.Add(tChart); tChart.Aspect.View3D = fal ...

  4. 应用matplotlib绘制地图

    #!/usr/bin/env python # -*- coding: utf-8 -*- from math import sqrt import shapefile from matplotlib ...

  5. 数字格式化函数:Highcharts.numberFormat()

    (转)数字格式化函数:Highcharts.numberFormat() 一.函数说明 该函数用于图表中数值的格式化,常见用途有数值精度控制.小数点符.千位符显示控制等.   二.函数使用   1.函 ...

  6. Highcharts X轴名称太长,如何设置下面这种样式

      Highcharts所有的图表除了饼图都有X轴和Y轴,默认情况下,x轴显示在图表的底部,y轴显示在左侧(多个y轴时可以是显示在左右两侧),通过chart.inverted = true 可以让x, ...

  7. R绘图基础

    一,布局 R绘图所占的区域,被分成两大部分,一是外围边距,一是绘图区域. 外围边距可使用par()函数中的oma来进行设置.比如oma=c(4,3,2,1),就是指外围边距分别为下边距:4行,左边距3 ...

  8. Python图表绘制:matplotlib绘图库入门

    matplotlib 是Python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中. 它的文档相当完备,并 ...

  9. (转)数字格式化函数:Highcharts.numberFormat()

    一.函数说明 该函数用于图表中数值的格式化,常见用途有数值精度控制.小数点符.千位符显示控制等.   二.函数使用   1.函数构造及参数 Highcharts.numberFormat (Numbe ...

  10. 数据可视化(5)--jqplot经典实例

    本来想把实例也写到上篇博客里,最后发现太长了,拆成两篇博客了. 实例来源于官方文档:http://www.jqplot.com/tests/ 这篇博客主要是翻译了官方文档关于经典实例的解说,并在相应代 ...

随机推荐

  1. WPF自定义控件(1)——仪表盘设计[1]

    0.小叙闲言 又接手一个新的项目了,再来一次上位机开发.网上有很多控件库,做仪表盘(gauge)的也不少,功能也很强大,但是个人觉得库很臃肿,自己就计划动手来写一个控件库,一是为学习,二是为了项目.下 ...

  2. 在Caffe中实现模型融合

    模型融合 有的时候我们手头可能有了若干个已经训练好的模型,这些模型可能是同样的结构,也可能是不同的结构,训练模型的数据可能是同一批,也可能不同.无论是出于要通过ensemble提升性能的目的,还是要设 ...

  3. 打造比Dictionary还要快2倍以上的字查找类

    针对一个长度为n的数组. [1,2,3,4,5,6,7,8,9] 最快的通用查找类是Dictionary其采用hashcode算法,复杂度为O(1). 而上大学时,最快的查找法为二分查找法,复杂度为O ...

  4. PHPexcel数据导出

    使用PHPexcel数据导出,可以从网上下载phpexcel引入使用,下面是我做的简单的数据导出练习 一.下载phpexcel 二.引发这个导出(我这里是写了一个简单的点击事件) <div id ...

  5. AFNetworking 用法详解

    之前一直使用ASIHttpRequest 做网络请求 ,后来新公司用AFNetWorking ,经过一段时间学习总结一下二者的优缺点: 1.AFNetWorking的优缺点 优点: 1.维护和使用者比 ...

  6. view测量

    一.测规格是由测量模式mode和测量大小size组成的,size好说,那测量模式mode代表什么含义呢.由上面的代码可知,测量模式有三类:    UNSPECIFIED    父控件不对你有任何限制, ...

  7. C++学习笔记1(标准的输入输出)

    前言: 个人一直以来比较懒,最近才准备记录一下自己学习C++的学习过程,希望自己能在写博客的时候能够坚持下去,欢迎大家在博客中支出存在的问题,好了不多说了,自己能坚持下去.我准备在我的博客中通过与C语 ...

  8. 跨语言时区处理与Epoch

    国际化通用程序或标准协议通常都涉及到时区问题,比如最近项目用到的OIDC(OpenID Connect). OIDC基于OAuth2协议,其id_token中包含了exp来表达该Token的过期时间, ...

  9. 【Vue 入门】使用 Vue2 开发一个展示项目列表的应用

    前言 一直没有找到一个合适的展示个人项目的模板,所以自己动手使用 Vue 写了一个.该模板基于 Markdown 文件进行配置,只需要按一定规则编写 Markdown 文件,然后使用一个 在线工具 转 ...

  10. Qtp自动测试工具(案例学习)

    ♣Qtp是什么? ♣测试用例网站    ♦注册与登录    ♦测试脚本       ◊录制/执行测试脚本       ◊分析录制的测试脚本       ◊执行.查看测试脚本    ♦建立检查点     ...