方伯伯的玉米田[SCOI2014]
题目描述
方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美。
这排玉米一共有N株,它们的高度参差不齐。
方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感的玉米拔除掉,使得剩下的玉米的高度构成一个单调不下降序列。
方伯伯可以选择一个区间,把这个区间的玉米全部拔高1单位高度,他可以进行最多K次这样的操作。拔玉米则可以随意选择一个集合的玉米拔掉。
问能最多剩多少株玉米,来构成一排美丽的玉米。
输入
第1行包含2个整数n,K,分别表示这排玉米的数目以及最多可进行多少次操作。
第2行包含n个整数,第i个数表示这排玉米,从左到右第i株玉米的高度ai。
输出
输出1个整数,最多剩下的玉米数。
样例输入
3 1
2 1 3
样例输出
3
提示
1 < N < 10000,1 < K ≤ 500,1 ≤ ai ≤5000
题解
仿佛耳熟能详的一道题,但是从来没有读过题面,原来是二维树状数组优化dp。f[i][j]表示到第i根玉米用j次拔高最多能留下多少根,显然区间选取从某点到n更有利于后面的点被选取(又是贪心思路),可写出f[i][j]=max{f[x][y],x<i,y<=j,a[x]+y<=a[i]+j},第一个条件是随着时间轴自然而然就满足的,后两个要求一个范围,可以用树状数组来优化。用二维树状数组(人生第一题)存储区间最大值,就可以方便地query转移了。
void update(int x,int y,int z)
{
for(int i=x;i<=k+1;i+=lowbit(i))
for(int j=y;j<=jd;j+=lowbit(j))
bj(sz[i][j],z);
}
int query(int x,int y)
{
int res=0;
for(int i=x;i;i-=lowbit(i))
for(int j=y;j;j-=lowbit(j))
bj(res,sz[i][j]);
return res;
}
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int sj=;
int n,k,a[sj],f[sj][],jd,jg,sz[][];
int bj(int &x,int y)
{
x=x>y?x:y;
}
int lowbit(int x)
{
return x&(-x);
}
void update(int x,int y,int z)
{
for(int i=x;i<=k+;i+=lowbit(i))
for(int j=y;j<=jd;j+=lowbit(j))
bj(sz[i][j],z);
}
int query(int x,int y)
{
int res=;
for(int i=x;i;i-=lowbit(i))
for(int j=y;j;j-=lowbit(j))
bj(res,sz[i][j]);
return res;
}
inline int r()
{
int zty=,jk=;
jk=getchar()-'';
if(jk>=&&jk<=) zty+=jk;
jk=getchar()-'';
while(jk>=&&jk<=)
{
zty*=;
zty+=jk;
jk=getchar()-'';
}
return zty;
}
int main()
{
n=r();
k=r();
for(int i=;i<=n;i++)
{
a[i]=r();
bj(jd,a[i]);
}
jd+=k;
for(int i=;i<=n;i++)
for(int j=k+;j>=;j--)
{
bj(f[i][j],query(j,a[i]+j-)+);
bj(jg,f[i][j]);
update(j,a[i]+j-,f[i][j]);
}
printf("%d",jg);
return ;
}
方伯伯的玉米田[SCOI2014]的更多相关文章
- bzoj 3594: [Scoi2014]方伯伯的玉米田 dp树状数组优化
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 314 Solved: 132[Submit][Sta ...
- bzoj 3594: [Scoi2014]方伯伯的玉米田
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MB Submit: 1399 Solved: 627 [Submit][ ...
- 「SCOI2014」方伯伯的玉米田 解题报告
#2211. 「SCOI2014」方伯伯的玉米田 发现是取一个最长不下降子序列 我们一定可以把一个区间加的右端点放在取出的子序列的最右边,然后就可以dp了 \(dp_{i,j}\)代表前\(i\)个玉 ...
- SCOI2014 bzoj3594 方伯伯的玉米田(二维树状数组+dp)
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1971 Solved: 961[Submit][St ...
- 【ybt金牌导航1-2-5】【luogu P3287】优美玉米 / 方伯伯的玉米田
优美玉米 / 方伯伯的玉米田 题目链接:ybt金牌导航1-2-5 / luogu P3287 题目大意 有一个数组,你可以每次给一个区间里面的值加一,要你使得最后剩下的最长单调不下降子序列最长. 思路 ...
- [SCOI2014]方伯伯的玉米田
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...
- BZOJ3594: [Scoi2014]方伯伯的玉米田【二维树状数组优化DP】
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...
- [SCOI2014]方伯伯的玉米田 题解(树状数组优化dp)
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...
- bzoj3594: [Scoi2014]方伯伯的玉米田--树状数组优化DP
题目大意:对于一个序列,可以k次选任意一个区间权值+1,求最长不下降子序列最长能为多少 其实我根本没想到可以用DP做 f[i][j]表示前i棵,操作j次,最长子序列长度 p[x][y]表示操作x次后, ...
随机推荐
- JVM中class文件探索与解析(一)
一直想成为一名优秀的架构师的我,转眼已经工作快两年了,对于java内核了解甚少,闲来时间,看看JVM,吧自己的一些研究写下来供大家参考,有不对的地方请指正. 废话不多说,一起来看看JVM中类文件是如何 ...
- 用jquery循环获得所有input标签里的value值
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- win32SDK的hello,world程序(二)
接上篇,原生的控件都不太好看,所以决定自己画一个,稍微处理下消息就能用了.不过,美化这东西是需要天赋的.即使技术再好,没有对UI布局调整和良好的审美能力,做出来的东西还是很挫. 主要把消息逻辑和画的过 ...
- vijos1010题解
题目: 话说乾隆带着他的宰相刘罗锅和你出巡江南,被杭州城府邀请去听戏,至于什么戏,那就不知了.乾隆很高兴,撒酒与君臣共享.三更欲回住处,可是乾隆这人挺怪,他首先要到西湖边散散步,而且命令不准有人跟着他 ...
- Asp.Net Core 中无法使用 ConfigurationManager.AppSettings
刚刚接触.net core ,准备把之前的一些技术常用工具先移植到.net Standard上面来, 方便以后使用,结果用到ConfigurationManager 的 AppSettings 就出现 ...
- Educational Codeforces Round 25 Five-In-a-Row(DFS)
题目网址:http://codeforces.com/contest/825/problem/B 题目: Alice and Bob play 5-in-a-row game. They have ...
- Oracle 11g OCM 考试大纲
考试大纲共分9部分. 一.Server Configuration 服务器配置 1 Create the database 创建数据库 2 Determine and set sizing p ...
- 【TensorFlow入门完全指南】模型篇·逻辑斯蒂回归模型
import库,加载mnist数据集. 设置学习率,迭代次数,batch并行计算数量,以及log显示. 这里设置了占位符,输入是batch * 784的矩阵,由于是并行计算,所以None实际上代表并行 ...
- SQL Server2008 安装及概述
最近在学习SQL Server 数据库,用的版本是2008 R2的版本,如下图所示,本人学习时间不长,写这篇文章一是为了锻炼自己加深印象,二也可以与和诸多朋友进行交流以及得到大家的指教. 安装教程网上 ...
- maven项目打包发布时跳过测试
mvn命令: mvn clean install -Dmaven.test.skip=true eclipse build... 命令: clean install -Dmaven.test.skip ...