众所周知,在mysql里的后通配符可以使用索引查找,前通配查询却无法使用到索引,即使是使用到了索引,也是使用了索引全扫描,效率依然不高,再MySQL5.7之前,一直都没有好的办法解决,但是到了MySQL5.7,自从有了虚拟列,这个问题就好办多了,能够已空间换时间。

  创建测试表

root@localhost [zeno]>show create table test_user\G ;
*************************** 1. row ***************************
Table: test_user
Create Table: CREATE TABLE `test_user` (
`uid` int(11) NOT NULL AUTO_INCREMENT,
`name` varchar(32) DEFAULT NULL,
`add_time` datetime DEFAULT NULL,
PRIMARY KEY (`uid`),
KEY `ix_name` (`name`)
) ENGINE=InnoDB AUTO_INCREMENT=6037060 DEFAULT CHARSET=utf8
1 row in set (0.00 sec) ERROR:
No query specified

  使用python插入测试数据

#!/usr/bin/python
import string
import random
import MySQLdb
import time conn = MySQLdb.connect(host='IPAddr',
port=3306,
user='zeno',
passwd='zeno',
db='zeno') def insert(para):
i = 11
while True:
r_name = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(random.randint(10, 30)))
print r_name cursor = conn.cursor()
cursor.execute("INSERT INTO test_user (name,add_time) VALUES ('%s', now())" % str(r_name))
i = i + 1
conn.commit()
#time.sleep(0.1)
print i insert(conn)

  查看插入的数据量

root@localhost [zeno]>show table status like 'test_user'\G ;
*************************** 1. row ***************************
Name: test_user
Engine: InnoDB
Version: 10
Row_format: Dynamic
Rows: 6002441
Avg_row_length: 51
Data_length: 310165504
Max_data_length: 0
Index_length: 0
Data_free: 5242880
Auto_increment: 6037060
Create_time: 2017-11-23 16:25:15
Update_time: 2017-11-23 16:23:29
Check_time: NULL
Collation: utf8_general_ci
Checksum: NULL
Create_options:
Comment:
1 row in set (0.00 sec) ERROR:
No query specified root@localhost [zeno]>select * from test_user limit 10 ;
+-----+-------------------------------+---------------------+
| uid | name | add_time |
+-----+-------------------------------+---------------------+
| 1 | U0WUJ3JJ81IRP27BSA4471 | 2017-11-23 15:37:49 |
| 2 | SOLYNM9Q9A5Y94YG | 2017-11-23 15:37:49 |
| 3 | ONNU5PPKXC3GBR | 2017-11-23 15:37:49 |
| 4 | WVC6GOJ29C | 2017-11-23 15:37:49 |
| 5 | Z653X99ZZI | 2017-11-23 15:37:49 |
| 6 | YP92P02DIKQ8O66K | 2017-11-23 15:37:49 |
| 7 | 2X3G6H8849SDP | 2017-11-23 15:37:49 |
| 8 | 9N9F668XQMTRQSCNE0FWJBMMJEFC0 | 2017-11-23 15:37:50 |
| 9 | 15XAHWZ1IJBP6P4EKCH | 2017-11-23 15:37:50 |
| 10 | VHQJQGQC7U | 2017-11-23 15:37:50 |
+-----+-------------------------------+---------------------+
10 rows in set (0.00 sec)

  开始测试

  一、验证查询条件中使用后通配符的情况

root@localhost [zeno]>select * from test_user where name like '9N9F668XQ%' ;
+-----+-------------------------------+---------------------+
| uid | name | add_time |
+-----+-------------------------------+---------------------+
| 8 | 9N9F668XQMTRQSCNE0FWJBMMJEFC0 | 2017-11-23 15:37:50 |
+-----+-------------------------------+---------------------+
1 row in set (0.00 sec) root@localhost [zeno]>explain select * from test_user where name like '9N9F668XQ%' ;
+----+-------------+-----------+------------+-------+---------------+---------+---------+------+------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-----------+------------+-------+---------------+---------+---------+------+------+----------+-----------------------+
| 1 | SIMPLE | test_user | NULL | range | ix_name | ix_name | 99 | NULL | 1 | 100.00 | Using index condition |
+----+-------------+-----------+------------+-------+---------------+---------+---------+------+------+----------+-----------------------+
1 row in set, 1 warning (0.00 sec)

  600W的数据,执行时间0.00sec,已经是毫秒级查询了

  从执行计划中可以看出,type=range, key = 'ix_name',证明是对索引ix_name进行了范围查找,所以,能很快地得到结果

  二、验证查询条件中使用前通配符的情况

root@localhost [zeno]>select * from test_user where name like '%WJBMMJEFC0' ;
+-----+-------------------------------+---------------------+
| uid | name | add_time |
+-----+-------------------------------+---------------------+
| 8 | 9N9F668XQMTRQSCNE0FWJBMMJEFC0 | 2017-11-23 15:37:50 |
+-----+-------------------------------+---------------------+
1 row in set (3.84 sec) root@localhost [zeno]>explain select * from test_user where name like '%WJBMMJEFC0' ;
+----+-------------+-----------+------------+------+---------------+------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-----------+------------+------+---------------+------+---------+------+---------+----------+-------------+
| 1 | SIMPLE | test_user | NULL | ALL | NULL | NULL | NULL | NULL | 6002441 | 11.11 | Using where |
+----+-------------+-----------+------------+------+---------------+------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

  600万的数据,运行了3.84sec,速度非常慢

  从执行计划中type=‘ALL’可以看出是进行了全表扫描,扫描完之后,再根据where条件找出合适的数据

  在MySQL5.7之前,对于这种条件中使用了前通配符的查询,几乎就是束手无策,但是,MySQL5.7中增加了一项新功能,可以用较小的代价实现快速查询

  创建虚拟列

root@localhost [zeno]>alter table test_user add r_name varchar(32) generated always as (reverse(`name`));
Query OK, 0 rows affected (0.44 sec)
Records: 0 Duplicates: 0 Warnings: 0

  在虚拟列上创建索引(跟一般创建索引无异)

root@localhost [zeno]>create index ix_r_name on test_user(r_name) ;
Query OK, 0 rows affected (41.90 sec)
Records: 0 Duplicates: 0 Warnings: 0

  问题来了,已经创建了虚拟列,也创建了所以,怎么实现对前通配符的快速查询呢?

  先用一个简短的数字来说明一下思路:假设要查询的列的最终值为‘0123456789’,前通配查询的时候,条件是 name like '%6789',但是已经创建了虚拟列,虚拟列的效果是把原来的数据反转,也就是变成了‘9876543210’,那么,查询的条件变成了name like '9876%',但是,不可能是每次都要自己计算一下,把'6789'换成‘9876’

  因此,在查询的时候,还要取巧的一步,条件中再次把输入的值反转,结果如下

root@localhost [zeno]>select * from test_user where r_name like concat(reverse('WJBMMJEFC0'),'%');
+-----+-------------------------------+---------------------+-------------------------------+
| uid | name | add_time | r_name |
+-----+-------------------------------+---------------------+-------------------------------+
| 8 | 9N9F668XQMTRQSCNE0FWJBMMJEFC0 | 2017-11-23 15:37:50 | 0CFEJMMBJWF0ENCSQRTMQX866F9N9 |
+-----+-------------------------------+---------------------+-------------------------------+
1 row in set (0.00 sec) root@localhost [zeno]>explain select * from test_user where r_name like concat(reverse('WJBMMJEFC0'),'%');
+----+-------------+-----------+------------+-------+---------------+-----------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-----------+------------+-------+---------------+-----------+---------+------+------+----------+-------------+
| 1 | SIMPLE | test_user | NULL | range | ix_r_name | ix_r_name | 99 | NULL | 1 | 100.00 | Using where |
+----+-------------+-----------+------------+-------+---------------+-----------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

  从执行结果来看,效果已经达到了,600W的数据也只是执行了0.00sec

  三、在条件中同时使用了前通配符和后通配符的情况,暂时没有好的解决办法

参考文档:

  MySQL官方介绍虚拟列:https://dev.mysql.com/doc/refman/5.7/en/create-table-generated-columns.html

  以上,如有错谬,请不吝指正。

  原创作品,如需转载,请标明出处,谢谢~

使用mysql5.7新特性(虚拟列)解决使用前通配符性能问题的更多相关文章

  1. Oracle 11g新特性虚拟列分区

    如今有个需求:一个单据表要依照月份来分区.假设是在Oracle 10g上,仅仅能再加一个字段. 在Oracle 11g以后就不一样了.能够用虚拟列处理. SQL> select * from v ...

  2. MySQL5.6 新特性之GTID【转】

    转自 MySQL5.6 新特性之GTID - jyzhou - 博客园http://www.cnblogs.com/zhoujinyi/p/4717951.html 背景: MySQL5.6在5.5的 ...

  3. [MySQL5.6 新特性] 全局事务标示符(GTID)

    GTID的全称为 global transaction identifier  , 可以翻译为全局事务标示符,GTID在原始master上的事务提交时被创建.GTID需要在全局的主-备拓扑结构中保持唯 ...

  4. SQL Server 2016新特性:列存储索引新特性

    SQL Server 2016新特性:列存储索引新特性 行存储表可以有一个可更新的列存储索引,之前非聚集的列存储索引是只读的. 非聚集的列存储索引支持筛选条件. 在内存优化表中可以有一个列存储索引,可 ...

  5. 使用mysql5.7新特性解决前通配符查询性能问题

    众所周知,在mysql里的后通配符可以使用索引查找,前通配查询却无法使用到索引,即使是使用到了索引,也是使用了索引全扫描,效率依然不高,再MySQL5.7之前,一直都没有好的办法解决,但是到了MySQ ...

  6. MySQL5.6新特性Index conditontion pushdow

    index condition pushdown是MySQL5.6的新特性,主要是对MySQL索引使用的优化. Index condition push简称ICP,索引条件下推,将索引条件从serve ...

  7. MySQL5.7新特性

    MySQL5.7介绍 身处 MySQL 这个圈子,能够切身地感受到大家对 MySQL 5.7 的期待和热情,似乎每个人都迫不及待的想要了解.学习和使用 MySQL 5.7.那么,我们不禁要问, MyS ...

  8. mysql5.7新特性探究

    一.MySql5.7增加的特性 1.MySql服务方面新特性 1) 初始化方式改变 MySql5.7之前版本初始化方式: scripts/mysql_install_db MySql5.7版本初始化方 ...

  9. MySQL5.6 新特性之GTID

    背景: MySQL5.6在5.5的基础上增加了一些改进,本文章先对其中一个一个比较大的改进"GTID"进行说明. 概念: GTID即全局事务ID(global transactio ...

随机推荐

  1. SQL server 数据库备份大

    首先简单的介绍一下Sql server 备份的类型有: 1:完整备份(所有的数据文件和部分的事务日志文件) 2:差异备份(最后一次完成备份后数据库改变的部分) 3:文件和文件组备份(对指定的文件和文件 ...

  2. win10 uwp 车表盘 径向规

    车表盘就是有刻度的圆盘加上针,这个控件可以直观让用户知道当前的速度或其他 看名字不知道是什么,我就放一张图 使用很简单,在Nuget,Radial Gauge 要使用大神做的,简单,在使用我们需要在N ...

  3. 深入浅出:JavaScript作用域链

    1. 什么是作用域 任何程序设计语言都有作用域的概念,简单的说,作用域就是变量的作用范围. 2. 变量的分类和变量作用域的分类 在JavaScript中,变量分为全局变量和局部变量,与此相对应的,变量 ...

  4. Python学习笔记(九)

    Python学习笔记(九): 装饰器(函数) 内置函数 1. 装饰器 1. 作用域 2. 高阶函数 3. 闭包 如果在一个内部函数里,对在外部作用域(但不是在全局作用域)的变量进行引用,那么内部函数就 ...

  5. 数据结构与算法--从平衡二叉树(AVL)到红黑树

    数据结构与算法--从平衡二叉树(AVL)到红黑树 上节学习了二叉查找树.算法的性能取决于树的形状,而树的形状取决于插入键的顺序.在最好的情况下,n个结点的树是完全平衡的,如下图"最好情况&q ...

  6. Java方法使用的有点总结

    方法使用的优点: 1-将解决问题的方法与主函数代码分开,逻辑更清晰,代码可读性更强. 2-若方法出错,则程序可以缩小为只在该方法中查找错误,使代码更容易调试. 3-方法是解决一类问题的抽象,一旦写成功 ...

  7. 关于scanf 与 cin gets(),getline()......输入输出字符串的区别

    很对人对于字符串的输入输出一直是比较模糊的,今天总结一下几个常用的输入流符号对于输入字符串时的区别: 1.scanf(),首先 它遇到空格或回车键(\n)就会结束,并且会将回车符算入字符串中: 2.c ...

  8. 三、Spring的面向切面

    Spring的面向切面 在应用开发中,有很多类似日志.安全和事务管理的功能.这些功能都有一个共同点,那就是很多个对象都需要这些功能.复用这些通用的功能的最简单的方法就是继承或者委托.但是当应用规模达到 ...

  9. Xuan.UWP.Framework

    开篇博客,以前总是懒,不喜欢写博客什么,其实都是给自己找理由,从今天开始有空就写写博客.新手博客,写得不好轻喷,哈哈! 开始正题,微软移动平台,从WP7开始,经历了WP8,然后WP8.1,到目前得Wi ...

  10. Vue和React对比

    Vue和React对比 Vue也已经升级到2.0版本了,到现在为止(2016/11/19)比较流行的MVVM框架有AngularJS(也有人认为其为MVC).ReactJS和VueJS,这三个框架中, ...