众所周知,在mysql里的后通配符可以使用索引查找,前通配查询却无法使用到索引,即使是使用到了索引,也是使用了索引全扫描,效率依然不高,再MySQL5.7之前,一直都没有好的办法解决,但是到了MySQL5.7,自从有了虚拟列,这个问题就好办多了,能够已空间换时间。

  创建测试表

root@localhost [zeno]>show create table test_user\G ;
*************************** 1. row ***************************
Table: test_user
Create Table: CREATE TABLE `test_user` (
`uid` int(11) NOT NULL AUTO_INCREMENT,
`name` varchar(32) DEFAULT NULL,
`add_time` datetime DEFAULT NULL,
PRIMARY KEY (`uid`),
KEY `ix_name` (`name`)
) ENGINE=InnoDB AUTO_INCREMENT=6037060 DEFAULT CHARSET=utf8
1 row in set (0.00 sec) ERROR:
No query specified

  使用python插入测试数据

#!/usr/bin/python
import string
import random
import MySQLdb
import time conn = MySQLdb.connect(host='IPAddr',
port=3306,
user='zeno',
passwd='zeno',
db='zeno') def insert(para):
i = 11
while True:
r_name = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(random.randint(10, 30)))
print r_name cursor = conn.cursor()
cursor.execute("INSERT INTO test_user (name,add_time) VALUES ('%s', now())" % str(r_name))
i = i + 1
conn.commit()
#time.sleep(0.1)
print i insert(conn)

  查看插入的数据量

root@localhost [zeno]>show table status like 'test_user'\G ;
*************************** 1. row ***************************
Name: test_user
Engine: InnoDB
Version: 10
Row_format: Dynamic
Rows: 6002441
Avg_row_length: 51
Data_length: 310165504
Max_data_length: 0
Index_length: 0
Data_free: 5242880
Auto_increment: 6037060
Create_time: 2017-11-23 16:25:15
Update_time: 2017-11-23 16:23:29
Check_time: NULL
Collation: utf8_general_ci
Checksum: NULL
Create_options:
Comment:
1 row in set (0.00 sec) ERROR:
No query specified root@localhost [zeno]>select * from test_user limit 10 ;
+-----+-------------------------------+---------------------+
| uid | name | add_time |
+-----+-------------------------------+---------------------+
| 1 | U0WUJ3JJ81IRP27BSA4471 | 2017-11-23 15:37:49 |
| 2 | SOLYNM9Q9A5Y94YG | 2017-11-23 15:37:49 |
| 3 | ONNU5PPKXC3GBR | 2017-11-23 15:37:49 |
| 4 | WVC6GOJ29C | 2017-11-23 15:37:49 |
| 5 | Z653X99ZZI | 2017-11-23 15:37:49 |
| 6 | YP92P02DIKQ8O66K | 2017-11-23 15:37:49 |
| 7 | 2X3G6H8849SDP | 2017-11-23 15:37:49 |
| 8 | 9N9F668XQMTRQSCNE0FWJBMMJEFC0 | 2017-11-23 15:37:50 |
| 9 | 15XAHWZ1IJBP6P4EKCH | 2017-11-23 15:37:50 |
| 10 | VHQJQGQC7U | 2017-11-23 15:37:50 |
+-----+-------------------------------+---------------------+
10 rows in set (0.00 sec)

  开始测试

  一、验证查询条件中使用后通配符的情况

root@localhost [zeno]>select * from test_user where name like '9N9F668XQ%' ;
+-----+-------------------------------+---------------------+
| uid | name | add_time |
+-----+-------------------------------+---------------------+
| 8 | 9N9F668XQMTRQSCNE0FWJBMMJEFC0 | 2017-11-23 15:37:50 |
+-----+-------------------------------+---------------------+
1 row in set (0.00 sec) root@localhost [zeno]>explain select * from test_user where name like '9N9F668XQ%' ;
+----+-------------+-----------+------------+-------+---------------+---------+---------+------+------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-----------+------------+-------+---------------+---------+---------+------+------+----------+-----------------------+
| 1 | SIMPLE | test_user | NULL | range | ix_name | ix_name | 99 | NULL | 1 | 100.00 | Using index condition |
+----+-------------+-----------+------------+-------+---------------+---------+---------+------+------+----------+-----------------------+
1 row in set, 1 warning (0.00 sec)

  600W的数据,执行时间0.00sec,已经是毫秒级查询了

  从执行计划中可以看出,type=range, key = 'ix_name',证明是对索引ix_name进行了范围查找,所以,能很快地得到结果

  二、验证查询条件中使用前通配符的情况

root@localhost [zeno]>select * from test_user where name like '%WJBMMJEFC0' ;
+-----+-------------------------------+---------------------+
| uid | name | add_time |
+-----+-------------------------------+---------------------+
| 8 | 9N9F668XQMTRQSCNE0FWJBMMJEFC0 | 2017-11-23 15:37:50 |
+-----+-------------------------------+---------------------+
1 row in set (3.84 sec) root@localhost [zeno]>explain select * from test_user where name like '%WJBMMJEFC0' ;
+----+-------------+-----------+------------+------+---------------+------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-----------+------------+------+---------------+------+---------+------+---------+----------+-------------+
| 1 | SIMPLE | test_user | NULL | ALL | NULL | NULL | NULL | NULL | 6002441 | 11.11 | Using where |
+----+-------------+-----------+------------+------+---------------+------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

  600万的数据,运行了3.84sec,速度非常慢

  从执行计划中type=‘ALL’可以看出是进行了全表扫描,扫描完之后,再根据where条件找出合适的数据

  在MySQL5.7之前,对于这种条件中使用了前通配符的查询,几乎就是束手无策,但是,MySQL5.7中增加了一项新功能,可以用较小的代价实现快速查询

  创建虚拟列

root@localhost [zeno]>alter table test_user add r_name varchar(32) generated always as (reverse(`name`));
Query OK, 0 rows affected (0.44 sec)
Records: 0 Duplicates: 0 Warnings: 0

  在虚拟列上创建索引(跟一般创建索引无异)

root@localhost [zeno]>create index ix_r_name on test_user(r_name) ;
Query OK, 0 rows affected (41.90 sec)
Records: 0 Duplicates: 0 Warnings: 0

  问题来了,已经创建了虚拟列,也创建了所以,怎么实现对前通配符的快速查询呢?

  先用一个简短的数字来说明一下思路:假设要查询的列的最终值为‘0123456789’,前通配查询的时候,条件是 name like '%6789',但是已经创建了虚拟列,虚拟列的效果是把原来的数据反转,也就是变成了‘9876543210’,那么,查询的条件变成了name like '9876%',但是,不可能是每次都要自己计算一下,把'6789'换成‘9876’

  因此,在查询的时候,还要取巧的一步,条件中再次把输入的值反转,结果如下

root@localhost [zeno]>select * from test_user where r_name like concat(reverse('WJBMMJEFC0'),'%');
+-----+-------------------------------+---------------------+-------------------------------+
| uid | name | add_time | r_name |
+-----+-------------------------------+---------------------+-------------------------------+
| 8 | 9N9F668XQMTRQSCNE0FWJBMMJEFC0 | 2017-11-23 15:37:50 | 0CFEJMMBJWF0ENCSQRTMQX866F9N9 |
+-----+-------------------------------+---------------------+-------------------------------+
1 row in set (0.00 sec) root@localhost [zeno]>explain select * from test_user where r_name like concat(reverse('WJBMMJEFC0'),'%');
+----+-------------+-----------+------------+-------+---------------+-----------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-----------+------------+-------+---------------+-----------+---------+------+------+----------+-------------+
| 1 | SIMPLE | test_user | NULL | range | ix_r_name | ix_r_name | 99 | NULL | 1 | 100.00 | Using where |
+----+-------------+-----------+------------+-------+---------------+-----------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

  从执行结果来看,效果已经达到了,600W的数据也只是执行了0.00sec

  三、在条件中同时使用了前通配符和后通配符的情况,暂时没有好的解决办法

参考文档:

  MySQL官方介绍虚拟列:https://dev.mysql.com/doc/refman/5.7/en/create-table-generated-columns.html

  以上,如有错谬,请不吝指正。

  原创作品,如需转载,请标明出处,谢谢~

使用mysql5.7新特性(虚拟列)解决使用前通配符性能问题的更多相关文章

  1. Oracle 11g新特性虚拟列分区

    如今有个需求:一个单据表要依照月份来分区.假设是在Oracle 10g上,仅仅能再加一个字段. 在Oracle 11g以后就不一样了.能够用虚拟列处理. SQL> select * from v ...

  2. MySQL5.6 新特性之GTID【转】

    转自 MySQL5.6 新特性之GTID - jyzhou - 博客园http://www.cnblogs.com/zhoujinyi/p/4717951.html 背景: MySQL5.6在5.5的 ...

  3. [MySQL5.6 新特性] 全局事务标示符(GTID)

    GTID的全称为 global transaction identifier  , 可以翻译为全局事务标示符,GTID在原始master上的事务提交时被创建.GTID需要在全局的主-备拓扑结构中保持唯 ...

  4. SQL Server 2016新特性:列存储索引新特性

    SQL Server 2016新特性:列存储索引新特性 行存储表可以有一个可更新的列存储索引,之前非聚集的列存储索引是只读的. 非聚集的列存储索引支持筛选条件. 在内存优化表中可以有一个列存储索引,可 ...

  5. 使用mysql5.7新特性解决前通配符查询性能问题

    众所周知,在mysql里的后通配符可以使用索引查找,前通配查询却无法使用到索引,即使是使用到了索引,也是使用了索引全扫描,效率依然不高,再MySQL5.7之前,一直都没有好的办法解决,但是到了MySQ ...

  6. MySQL5.6新特性Index conditontion pushdow

    index condition pushdown是MySQL5.6的新特性,主要是对MySQL索引使用的优化. Index condition push简称ICP,索引条件下推,将索引条件从serve ...

  7. MySQL5.7新特性

    MySQL5.7介绍 身处 MySQL 这个圈子,能够切身地感受到大家对 MySQL 5.7 的期待和热情,似乎每个人都迫不及待的想要了解.学习和使用 MySQL 5.7.那么,我们不禁要问, MyS ...

  8. mysql5.7新特性探究

    一.MySql5.7增加的特性 1.MySql服务方面新特性 1) 初始化方式改变 MySql5.7之前版本初始化方式: scripts/mysql_install_db MySql5.7版本初始化方 ...

  9. MySQL5.6 新特性之GTID

    背景: MySQL5.6在5.5的基础上增加了一些改进,本文章先对其中一个一个比较大的改进"GTID"进行说明. 概念: GTID即全局事务ID(global transactio ...

随机推荐

  1. iOS正确使用const,static,extern

    static 修饰局部变量 让局部变量只初始化一次 局部变量在程序中只有一份内存 并不会改变局部变量的作用域,仅仅是改变了局部变量的生命周期(只到程序结束,这个局部变量才会销毁) 修饰全局变量 全局变 ...

  2. (@WhiteTaken)设计模式学习——享元模式

    继续学习享元模式... 乍一看到享元的名字,一头雾水,学习了以后才觉得,这个名字确实比较适合这个模式. 享元,即共享对象的意思. 举个例子,如果制作一个五子棋的游戏,如果每次落子都实例化一个对象的话, ...

  3. 使用vim编写hexo文档,并用ultisnips/snipmates/snippets插件补全

    作为一个vim使用者,编写markdown文档时若不能用vim这怎么能受的了! 下面是我编写markdown的时候用到的插件 Plugin 'Markdown'Plugin 'Markdown-syn ...

  4. 在打开Dreamweaver软件情况下,vs2010 asp项目无法调试

    会出现以下情况,只要关闭Dreamweaver就可以正常调试vs2010 asp项目.

  5. Java实用知识记录 —— 截止到Java8

    记录Java实用知识点,截止(包括)到Java8,只作概要的描述,不涉及到具体细节.变量:int.long的包装类支持无符号位操作,即其在内存中的位可以用来全部表示正数."_"可以 ...

  6. Cosmos OpenSSD架构分析--FSC

    接口速度: type   bw  read 75μs 1s/75μs*8k/1s=104m/s write 1300μs   1s/1300μs*8k/1s=6m/s erase 3.8ms  1s/ ...

  7. Tomcat Java.OutOfMemoryError : PermGen Space异常

    背景:前些日子更新公司多年前一个旧平台发布到Tomcat上之后,频繁收到网站许多模块无法正常使用的反汇. 测试过程中发现平台发布一段时间后,访问相关网页出现如下500页面 解决方案:PermGen s ...

  8. C#设计模式之十组合模式(Composite)【结构型】

    一.引言   今天我们要讲[结构型]设计模式的第四个模式,该模式是[组合模式],英文名称是:Composite Pattern.当我们谈到这个模式的时候,有一个物件和这个模式很像,也符合这个模式要表达 ...

  9. Linux.根据进程名关键字杀进程

    先看例子, 假设系统中有以下2个进程 USER       PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND root     ...

  10. Ardupilot设备驱动 IIC、SPI、USART

    设备代码层次结构 ​ Ardupilot设备驱动代码的层次结构采用 前端实现 和 后端实现 分割,前端库主要供机器代码层调用,后端库主要供前端调用.这里前端可以理解为应用层,后端理解为驱动层,前端调用 ...