Python ---------- Tensorflow (二)学习率
假设最小化函数 y = x2 , 选择初始点 x0= 5
1. 学习率为1的时候,x在5和-5之间震荡。
#学习率为1 import tensorflow as tf
training_steps = 10
learning_rate = 1
x = tf.Variable(tf.constant(5, dtype=tf.float32),name="x")
y = tf.square(x) train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(y) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(training_steps):
sess.run(train_op)
x_value = sess.run(x)
print("After %s iteration(s): x%s is %f."%(i+1,i+1,x_value)) #输出结果:
After 1 iteration(s): x1 is -5.000000.
After 2 iteration(s): x2 is 5.000000.
After 3 iteration(s): x3 is -5.000000.
After 4 iteration(s): x4 is 5.000000.
After 5 iteration(s): x5 is -5.000000.
After 6 iteration(s): x6 is 5.000000.
After 7 iteration(s): x7 is -5.000000.
After 8 iteration(s): x8 is 5.000000.
After 9 iteration(s): x9 is -5.000000.
After 10 iteration(s): x10 is 5.000000.
2.学习率为0.001的时候,下降速度过慢,在901轮时才收敛到0.823355.
#学习率为0.001
training_steps = 1000
learning_rate = 0.001
x = tf.Variable(tf.constant(5,dtype=tf.float32),name="x")
y = tf.square(x) train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(y) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(training_steps):
sess.run(train_op)
if i % 100 ==0:
x_value = sess.run(x)
print("After %s iteration(s): x%s is %f."%(i+1,i+1,x_value)) #结果为: After 1 iteration(s): x1 is 4.990000.
After 101 iteration(s): x101 is 4.084646.
After 201 iteration(s): x201 is 3.343555.
After 301 iteration(s): x301 is 2.736923.
After 401 iteration(s): x401 is 2.240355.
After 501 iteration(s): x501 is 1.833880.
After 601 iteration(s): x601 is 1.501153.
After 701 iteration(s): x701 is 1.228794.
After 801 iteration(s): x801 is 1.005850.
After 901 iteration(s): x901 is 0.823355.
3.使用指数衰减的学习率,在迭代初期得到较高的下降速度,可以在较小的训练轮数下取得不错的收敛程度。
TRAINING_STEPS = 100
global_step = tf.Variable(0)
LEARNING_RATE = tf.train.exponential_decay(0.1, global_step, 1, 0.96, staircase=True) x = tf.Variable(tf.constant(5, dtype=tf.float32), name="x")
y = tf.square(x)
train_op = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(y, global_step=global_step) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(TRAINING_STEPS):
sess.run(train_op)
if i % 10 == 0:
LEARNING_RATE_value = sess.run(LEARNING_RATE)
x_value = sess.run(x)
print ("After %s iteration(s): x%s is %f, learning rate is %f."% (i+1, i+1, x_value, LEARNING_RATE_value)) #输出结果: After 1 iteration(s): x1 is 4.000000, learning rate is 0.096000.
After 11 iteration(s): x11 is 0.690561, learning rate is 0.063824.
After 21 iteration(s): x21 is 0.222583, learning rate is 0.042432.
After 31 iteration(s): x31 is 0.106405, learning rate is 0.028210.
After 41 iteration(s): x41 is 0.065548, learning rate is 0.018755.
After 51 iteration(s): x51 is 0.047625, learning rate is 0.012469.
After 61 iteration(s): x61 is 0.038558, learning rate is 0.008290.
After 71 iteration(s): x71 is 0.033523, learning rate is 0.005511.
After 81 iteration(s): x81 is 0.030553, learning rate is 0.003664.
After 91 iteration(s): x91 is 0.028727, learning rate is 0.002436.
Python ---------- Tensorflow (二)学习率的更多相关文章
- 基于Ubuntu+Python+Tensorflow+Jupyter notebook搭建深度学习环境
基于Ubuntu+Python+Tensorflow+Jupyter notebook搭建深度学习环境 前言一.环境准备环境介绍软件下载VMware下安装UbuntuUbuntu下Anaconda的安 ...
- Python 基础 二
Python 基础 二 今天对昨天学习的Python基础知识进行总结,学而不思则惘,思而不学则殆! 一.先对昨天学习的三大循环的使用情况进行总结: 1.while循环的本质就是让计算机在满足某一条件的 ...
- 初学Python(二)——数组
初学Python(二)——数组 初学Python,主要整理一些学习到的知识点,这次是数组. # -*- coding:utf-8 -*- list = [2.0,3.0,4.0] #计算list长度 ...
- Python学习二:词典基础详解
作者:NiceCui 本文谢绝转载,如需转载需征得作者本人同意,谢谢. 本文链接:http://www.cnblogs.com/NiceCui/p/7862377.html 邮箱:moyi@moyib ...
- 有关python下二维码识别用法及识别率对比分析
最近项目中用到二维码图片识别,在python下二维码识别,目前主要有三个模块:zbar .zbarlight.zxing. 1.三个模块的用法: #-*-coding=utf-8-*- import ...
- PYTHON练习题 二. 使用random中的randint函数随机生成一个1~100之间的预设整数让用户键盘输入所猜的数。
Python 练习 标签: Python Python练习题 Python知识点 二. 使用random中的randint函数随机生成一个1~100之间的预设整数让用户键盘输入所猜的数,如果大于预设的 ...
- 从Scratch到Python——Python生成二维码
# Python利用pyqrcode模块生成二维码 import pyqrcode import sys number = pyqrcode.create('从Scratch到Python--Pyth ...
- Python Tensorflow CNN 识别验证码
Python+Tensorflow的CNN技术快速识别验证码 文章来源于: https://www.jianshu.com/p/26ff7b9075a1 验证码处理的流程是:验证码分析和处理—— te ...
- Tensorflow实现学习率衰减
Tensorflow实现学习率衰减 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 Deeplearning AI Andrew Ng Tensorflow1.2 API 学习率衰减 ...
随机推荐
- ch2-vue实例(new Vue({}) 属性与方法 声明周期)
Vue 实例1 每个Vue.js都是通过创建一个Vue的根实例启动的 var vm = new Vue({}) 2 扩展Vue构造器,用预定义选项创建可复用的组件构造器 var MyComponent ...
- python中ConfigParse模块的用法
ConfigParser 是Python自带的模块, 用来读写配置文件, 用法及其简单. 配置文件的格式是: [...]包含的叫section section 下有option=value这样的键值 ...
- 一些精妙的sql语句收集
--1.说明:复制表(只复制结构,源表名:a 新表名:b) (Access可用) --法一: select * into b from a where 1<>1 --法二: select ...
- curl命令用于模拟http浏览器发起动作
1.模拟http浏览器发起访问百度首页的动作 curl http://www.baidu.com 2.也可以模拟http浏览器发起POST动作,这个在测试后端程序时非常常见.
- Django安装Xadmin步骤
在Django中安装Xadmin替换原始的admin,下面介绍两种方法安装 第一种方法:pip安装 第一步: 直接pip安装xadmin pip install xadmin pip会同时安装上面三个 ...
- 点击jsp页面上的超链接后怎么找到对应的servlet
首先超链接是一个像是url一部分的东西,其实不追求深入的道理可以联想到web.xml中的一个<url-pattern>,其实它俩也的确是对应关系,然后<url-pattern> ...
- 神经网络JOONE的实践
什么是joone Joone是一个免费的神经网络框架来创建,训练和测试人造神经网络.目标是为最热门的Java技术创造一个强大的环境,为热情和专业的用户. Joone由一个中央引擎组成,这是Joone开 ...
- Java IO(IO流)-2
IO流 第一部分 (OutputStreamWriter BufferOutputStream) 转换流 超类为Reader和Writer 是字符流通向字节流的桥梁:可使用指定的字符编码表,将要写入流 ...
- web项目生成war包的问题
今天面试一家公司,问我生成war包的命令是什么? 当时没明白,就说自己用的eclipse直接右键 export --->war 完了重启tomcat(第一种) 好久没用maven了.回来一查才明 ...
- .6-Vue源码之AST(2)
上一节获取到了DOM树的字符串,准备进入compile阶段: // Line-9326 function compileToFunctions(template,options,vm) { // 获取 ...