题目背景

在双人对决的竞技性比赛,如乒乓球、羽毛球、国际象棋中,最常见的赛制是淘汰赛和循环赛。前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高。后者的特点是较为公平,偶然性较低,但比赛过程往往十分冗长。

本题中介绍的瑞士轮赛制,因最早使用于18951895年在瑞士举办的国际象棋比赛而得名。它可以看作是淘汰赛与循环赛的折中,既保证了比赛的稳定性,又能使赛程不至于过长。

题目描述

2 \times N2×N 名编号为 1\sim 2N1∼2N 的选手共进行R 轮比赛。每轮比赛开始前,以及所有比赛结束后,都会按照总分从高到低对选手进行一次排名。选手的总分为第一轮开始前的初始分数加上已参加过的所有比赛的得分和。总分相同的,约定编号较小的选手排名靠前。

每轮比赛的对阵安排与该轮比赛开始前的排名有关:第11 名和第22 名、第 33 名和第 44名、……、第2K - 12K−1名和第2K2K名、…… 、第2N - 12N−1名和第2N2N名,各进行一场比赛。每场比赛胜者得11分,负者得 00分。也就是说除了首轮以外,其它轮比赛的安排均不能事先确定,而是要取决于选手在之前比赛中的表现。

现给定每个选手的初始分数及其实力值,试计算在R 轮比赛过后,排名第QQ 的选手编号是多少。我们假设选手的实力值两两不同,且每场比赛中实力值较高的总能获胜。

输入输出格式

输入格式:

第一行是三个正整数N,R ,QN,R,Q,每两个数之间用一个空格隔开,表示有 2 \times N2×N名选手、RR 轮比赛,以及我们关心的名次 QQ。

第二行是2 \times N2×N 个非负整数s_1, s_2, …, s_{2N}s1​,s2​,…,s2N​,每两个数之间用一个空格隔开,其中s_isi​表示编号为ii 的选手的初始分数。 第三行是2 \times N2×N 个正整数w_1 , w_2 , …, w_{2N}w1​,w2​,…,w2N​,每两个数之间用一个空格隔开,其中 w_iwi​ 表示编号为ii 的选手的实力值。

输出格式:

一个整数,即RR 轮比赛结束后,排名第QQ 的选手的编号。

输入输出样例

输入样例#1: 复制

2 4 2
7 6 6 7
10 5 20 15
输出样例#1: 复制

1

一看是一道超级水题
但是每轮进行排序会超时三个点
普通超时代码:
#include<bits/stdc++.h>
using namespace std;
//input
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);i--)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m);
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define ll long long
#define inf 0x3f3f3f3f
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
//////////////////////////////////
#define N 500+5 struct node
{
int id;
int ab;
int val;
}s[+]; bool cmp(node a,node b)
{
return a.val>b.val||a.val==b.val&&a.id<b.id;
} int main()
{
int n,m,k;RIII(n,m,k);
rep(i,,*n)
RI(s[i].val),s[i].id=i;
rep(i,,*n)
RI(s[i].ab);
sort(s+,s++*n,cmp);
while(m--)
{
rep(i,,n)
if(s[*i].ab>s[*i-].ab )
s[*i].val++;
else s[*i-].val++;
sort(s+,s++*n,cmp);
}
cout<<s[k].id<<endl;
return ;
}

快速排序对随机数字具有很大优势

但是这题的数据只是相邻的有变化  至少n个数据是已经有序的  用快排效率非常低

可以使用归并排序

c++函数库里面有个merge函数

将两个有序序列合并为一个有序序列  这其中就蕴含了归并排序的思想

注意merge的格式!

#include<bits/stdc++.h>
using namespace std;
//input
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);i--)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m);
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define ll long long
#define inf 0x3f3f3f3f
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
//////////////////////////////////
#define N 500+5
struct node
{
int id,ab,val;
}s[+],win[+],lose[+];
bool cmp(node a,node b)
{
return a.val>b.val||a.val==b.val&&a.id<b.id;
}
int main()
{
int n,m,k;RIII(n,m,k);
rep(i,,*n)
RI(s[i].val),s[i].id=i;
rep(i,,*n)
RI(s[i].ab);
sort(s+,s++*n,cmp);
while(m--)
{
int w=,lo=; rep(i,,n)
if(s[*i].ab>s[*i-].ab )
{
s[*i].val++;
win[++w]=s[*i];
lose[++lo]=s[*i-];
}
else
{
s[*i-].val++;
win[++w]=s[*i-];
lose[++lo]=s[*i];
} merge(win+,win++n,lose+,lose++n,s+,cmp);//注意格式
}
cout<<s[k].id<<endl;
return ;
}

P1309 瑞士轮 排序选择 时间限制 归并排序的更多相关文章

  1. 洛谷 P1309 瑞士轮 解题报告

    P1309 瑞士轮 题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平,偶然性较低 ...

  2. P1309 瑞士轮 (吸氧了)

    P1309 瑞士轮 题解 1.这题可以模拟一下 2.sort吸氧可以过(可能是排序有点慢吧,不开会T) sort排序时注意: return 1 是满足条件,不交换 return 0是不满足,交换 代码 ...

  3. 洛谷P1309 瑞士轮(归并排序)

    To 洛谷.1309 瑞士轮 题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平, ...

  4. luogu P1309 瑞士轮【排序】

    题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平,偶然性较低,但比赛过程往往十分 ...

  5. 洛谷P1309——瑞士轮(归并排序)

    https://www.luogu.org/problem/show?pid=1309#sub 题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点 ...

  6. NOIP2011 普及组 T3 洛谷P1309 瑞士轮

    今天题做太少,放道小题凑数233 题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公 ...

  7. P1309 瑞士轮

    题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平,偶然性较低,但比赛过程往往十分 ...

  8. 洛谷 P1309 瑞士轮

    题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平,偶然性较低,但比赛过程往往十分 ...

  9. P1309 瑞士轮 未完成 60

    题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平,偶然性较低,但比赛过程往往十分 ...

随机推荐

  1. 3)django-路由系统url

    一:django路由系统说明 路由都在urls文件里,它将浏览器输入的url映射到相应的业务处理逻辑 二:django 常用路由系统配置  1)URL常用有模式一FBV(function base v ...

  2. Winform中的TextBox的小技巧

    1  一些常用属性this.textBox5.PasswordChar = '@';  //密码的样式            this.textBox5.UseSystemPasswordChar = ...

  3. Oracle+PL+SQL从入门到精通.丁士锋.清华大学出版社.2012

    \t第1篇 pl/sql开发入门第1章 oracle 11g数据库系统1.1 关系型数据库系统介绍1.1.1 什么是关系型数据模型1.1.2 数据库系统范式1.1.3 关系型数据库管理系统1.1.4 ...

  4. nginx代理跨域(mac)

    首先找到nginx.conf文件,修改并添加如下配置 html 文件 <!DOCTYPE html> <html lang="en"> <head&g ...

  5. 手机端rem 用法

    !function(n){ var e=n.document, t=e.documentElement, i=720, d=i/100, o="orientationchange" ...

  6. 简化版的AXI-LITE4和配合使用的RTL

    ////////////////////////////////////////////////////////////////////////////////// // // The ZYNQ FI ...

  7. 使用gulp-babel转换Es6出现exports is not defined 问题

    //问题描述:当使用import导入模块时,出现exports is not defined //1.安装插件 npm install --save-dev babel-plugin-transfor ...

  8. LeetCode(120):三角形最小路径和

    Medium! 题目描述: 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] ...

  9. java String正则表达式

    1.正则表达式 字符串替换,     例子; String s="131hello334thrid  ".replaceAll("[a-zA-Z]"," ...

  10. Eclipse中部署Android开发环境插件安装问题方案

    1.添加第一个插件ADT之后出现eclipse原有的SDK管理问题.需要重新安装SDK 2.一种方式按照系统提示直接联网自动搜索安装,另一种就是下载好之后import. 1.用接口声明的变量称为接口变 ...