java.net.ConnectException: Call From slaver1/192.168.19.128 to slaver1:8020 failed on connection exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.apache.org
1:练习spark的时候,操作大概如我读取hdfs上面的文件,然后spark懒加载以后,我读取详细信息出现如下所示的错误,错误虽然不大,我感觉有必要记录一下,因为错误的起因是对命令的不熟悉造成的,错误如下所示:
scala> text.collect
java.net.ConnectException: Call From slaver1/192.168.19.128 to slaver1: failed on connection exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.apache.org/hadoop/ConnectionRefused
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:)
at java.lang.reflect.Constructor.newInstance(Constructor.java:)
at org.apache.hadoop.net.NetUtils.wrapWithMessage(NetUtils.java:)
at org.apache.hadoop.net.NetUtils.wrapException(NetUtils.java:)
at org.apache.hadoop.ipc.Client.call(Client.java:)
at org.apache.hadoop.ipc.Client.call(Client.java:)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:)
at com.sun.proxy.$Proxy36.getFileInfo(Unknown Source)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.getFileInfo(ClientNamenodeProtocolTranslatorPB.java:)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:)
at java.lang.reflect.Method.invoke(Method.java:)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:)
at com.sun.proxy.$Proxy37.getFileInfo(Unknown Source)
at org.apache.hadoop.hdfs.DFSClient.getFileInfo(DFSClient.java:)
at org.apache.hadoop.hdfs.DistributedFileSystem$.doCall(DistributedFileSystem.java:)
at org.apache.hadoop.hdfs.DistributedFileSystem$.doCall(DistributedFileSystem.java:)
at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:)
at org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:)
at org.apache.hadoop.fs.Globber.getFileStatus(Globber.java:)
at org.apache.hadoop.fs.Globber.glob(Globber.java:)
at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:)
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:)
at org.apache.spark.rdd.RDD$$anonfun$partitions$.apply(RDD.scala:)
at org.apache.spark.rdd.RDD$$anonfun$partitions$.apply(RDD.scala:)
at scala.Option.getOrElse(Option.scala:)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:)
at org.apache.spark.rdd.RDD$$anonfun$partitions$.apply(RDD.scala:)
at org.apache.spark.rdd.RDD$$anonfun$partitions$.apply(RDD.scala:)
at scala.Option.getOrElse(Option.scala:)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:)
at org.apache.spark.rdd.RDD$$anonfun$collect$.apply(RDD.scala:)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:)
at org.apache.spark.rdd.RDD.collect(RDD.scala:)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:)
at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:)
at $iwC$$iwC$$iwC$$iwC.<init>(<console>:)
at $iwC$$iwC$$iwC.<init>(<console>:)
at $iwC$$iwC.<init>(<console>:)
at $iwC.<init>(<console>:)
at <init>(<console>:)
at .<init>(<console>:)
at .<clinit>(<console>)
at .<init>(<console>:)
at .<clinit>(<console>)
at $print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:)
at java.lang.reflect.Method.invoke(Method.java:)
at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:)
at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:)
at org.apache.spark.repl.SparkIMain.loadAndRunReq$(SparkIMain.scala:)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:)
at org.apache.spark.repl.SparkILoop.reallyInterpret$(SparkILoop.scala:)
at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:)
at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:)
at org.apache.spark.repl.SparkILoop.processLine$(SparkILoop.scala:)
at org.apache.spark.repl.SparkILoop.innerLoop$(SparkILoop.scala:)
at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$.apply$mcZ$sp(SparkILoop.scala:)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$.apply(SparkILoop.scala:)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$.apply(SparkILoop.scala:)
at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:)
at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:)
at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:)
at org.apache.spark.repl.Main$.main(Main.scala:)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:)
at java.lang.reflect.Method.invoke(Method.java:)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.net.ConnectException: Connection refused
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:)
at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:)
at org.apache.hadoop.ipc.Client$Connection.setupConnection(Client.java:)
at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:)
at org.apache.hadoop.ipc.Client$Connection.access$(Client.java:)
at org.apache.hadoop.ipc.Client.getConnection(Client.java:)
at org.apache.hadoop.ipc.Client.call(Client.java:)
... more
2:错误原因如下所示:
我使用了如下所示命令来读取hdfs上面的文件,scala> var text = sc.textFile("hdfs://slaver1:/input.txt");,然后使用text.collect命令来查看详细信息,就是查看详细信息的时候报的上面的错误,错误原因是因为我读取hdfs文件的时候少了端口号,造成的错误;
修改为如下所示即可:
scala> var text = sc.textFile("hdfs://slaver1:9000/input.txt");
scala> text.collect
java.net.ConnectException: Call From slaver1/192.168.19.128 to slaver1:8020 failed on connection exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.apache.org的更多相关文章
- exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.apache.org/hadoop/ConnectionRefused
1.虽然,不是大错,还说要贴一下,由于我运行run-example streaming.NetworkWordCount localhost 9999的测试案例,出现的错误,第一感觉就是Spark没有 ...
- Caused by: java.net.ConnectException: Call From master/192.168.199.130 to master:9000 failed on connection exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.
1:安装好hive,准备启动的时候出现下面的错误(由于hive是基于Hadoop的,所以必须先将你的集群启动起来,我就是没有启动集群,直接启动hive导致的错误): [root@master bin] ...
- ls: Call From hdoop2/192.168.18.87 to hdoop2:8020 failed on connection exception: java.net.ConnectException: 拒绝连接; For more details see
场景: 预发环境中,同事已经搭建了一套hadoop集群,由于版本与所需不符,所以需要替换版本 问题描述: 在配置文件都准确的情况下,启动hadoop,出现以下报错: 启动之前初始化: 初始化目录 ...
- Error: java.net.ConnectException: Call From tuge1/192.168.40.100 to tuge2:8032 failed on connection exception
先看解决方案,再看唠嗑,唠嗑可以忽略. 解决方案: 使用start yarn.sh启动yarn就可以了. 唠嗑: 今天学习Spark基于Yarn部署.然后总以为Yarn是让Spark启动的,提交程序的 ...
- Call From master/192.168.128.135 to master:8485 failed on connection exception: java.net.ConnectException: Connection refused
hadoop集群搭建了ha,初次启动正常,最近几天启动时偶尔发现,namenode1节点启动后一段时间(大约10几秒-半分钟左右),namenode1上namenode进程停掉,查看日志: -- :: ...
- Hadoop格式化 From hu-hadoop1/192.168.11.11 to hu-hadoop2:8485 failed on connection exception: java.net.
192.168.11.12:8485: Call From hu-hadoop1/192.168.11.11 to hu-hadoop2:8485 failed on connection excep ...
- INFO org.apache.hadoop.ipc.RPC: Server at master/192.168.200.128:9000 not available yet, Zzzzz...
hadoop 启动时namenode和datanode可以启动,使用jps命令也可以看到进程,但是在浏览器中输入master:50070却没有显示datanode 查看datanode的log日志: ...
- Bad connection to FS. command aborted. exception: Call to chaoren/192.168.80.100:9000 failed on connection exception: java.net.ConnectException: Connection refused
Bad connection to FS. command aborted. exception: Call to chaoren/192.168.80.100:9000 failed on conn ...
- 格式化namenode时 报错 No Route to Host from node1/192.168.1.111 to node3:8485 failed on socket timeout exception: java.net.NoRouteToHostException: No route to host
// :: FATAL namenode.NameNode: Failed to start namenode. org.apache.hadoop.hdfs.qjournal.client.Quor ...
随机推荐
- python3 xml模块
一.简介 xml是实现不通语言或程序之间进行数据交换的协议,可扩展标记语言,标准通用标记语言的子集.是一种用于标记电子文件使其具有结构性的标记语言.xml格式如下,是通过<>节点来区别数据 ...
- MySQL之路 ——2、步履维艰的建表
1.首先,在windows下,不区分大小写.Linux下可能要区分,具体参考下面文章 mysql表名忽略大小写问题记录 2.用command line client 每句以分号结尾. 3.Navica ...
- Centos6.8实现SVN提交后自动更新目录
1.创建svn目录 mkdir /var/www/project 2.从服务器的本地svn上checkout最新版本代码到www目录下的project文件夹,注意本地svn服务器地址和端口号是在启动s ...
- PHP一维数组转二维数组正则表达式
2017年11月20日17:17:08 array(1 => '哈哈') 变成 array('id' => 1, 'name' => '哈哈') 查找目标: (\d)\s=&g ...
- vue.js computed,watch的区别
computed: 当数据没有变化时,它会去读取缓存,当数据有变化时,它才会去执行computed,而不会像method和watch一样每次都去执行函数(摘自https://www.jb51.net/ ...
- [PHP]命名空间的一些要点
1.命名空间前不能接"\": namespace MyProject\Sub\Level; // it's right; namespace \MyProject\Sub\Leve ...
- docker的安装及使用
准备工具: 系统:ubuntu18.04 docker软件包:docker-compose.tar.gz,containerd.io_1.2.4-1_amd64.deb,docker-ce-cli_1 ...
- 硬盘性能测试工具fio
如何衡量云硬盘的性能 IOPS:每秒读/写次数,单位为次(计数).存储设备的底层驱动类型决定了不同的 IOPS. 吞吐量:每秒的读写数据量,单位为MB/s. 时延:IO操作的发送时间到接收确认所经过的 ...
- centos 7.3 设置静态IP
注:本文来源:张亮博客 的 <centos 7.3 设置静态IP或ping 报name or service not known> 首先把虚拟机配置为桥接模式,然后开启再你打算修改虚拟机 ...
- netstat常见基本用法(转)
netstat 简介 Netstat 是一款命令行工具,可用于列出系统上所有的网络套接字连接情况,包括 tcp, udp 以及 unix 套接字,另外它还能列出处于监听状态(即等待接入请求)的套接字. ...