数据增强(每10度进行旋转,进行一次增强,然后对每张图片进行扩充10张patch,最后得到原始图片数*37*10数量的图片)
# -*- coding: utf-8 -*-
"""
Fourmi Editor
This is a temporary script file.
"""
import cv2
import os
import numpy as np
import random
import math
def disOrdeImgs(Imgpath,Labelpath,orgTrainPath,orgTestPath,labelTrainPath,labelTestPath):
if not os.path.exists(orgTrainPath):
os.makedirs(orgTrainPath)
if not os.path.exists(orgTestPath):
os.makedirs(orgTestPath)
if not os.path.exists(labelTrainPath):
os.makedirs(labelTrainPath)
if not os.path.exists(labelTestPath):
os.makedirs(labelTestPath)
count=0
for fn in os.listdir(Imgpath): #fn 表示的是文件名
count = count+1
for index,v in enumerate(np.random.permutation(count)):
print('index:',index)
print('v:',v)
if index<=31911:
OrgTrainPath=os.path.join(Imgpath,str(v)+'.jpg')
Trainimg =cv2.imread(OrgTrainPath,0)
TrainPath=os.path.join(orgTrainPath,str(v)+'.jpg')
cv2.imwrite(TrainPath,Trainimg)
LabelTrainPath=os.path.join(Labelpath,str(v)+'.png')
Trainlabel =cv2.imread(LabelTrainPath,0)
TrainPath=os.path.join(labelTrainPath,str(v)+'.png')
cv2.imwrite(TrainPath,Trainlabel)
else:
OrgTestPath=os.path.join(Imgpath,str(v)+'.jpg')
Testimg =cv2.imread(OrgTestPath,0)
TestPath=os.path.join(orgTestPath,str(v)+'.jpg')
cv2.imwrite(TestPath,Testimg)
LabelTestPath=os.path.join(Labelpath,str(v)+'.png')
Testlabel =cv2.imread(LabelTestPath,0)
TestPath=os.path.join(labelTestPath,str(v)+'.png')
cv2.imwrite(TestPath,Testlabel)
def extract_random(full_imgs,full_masks,patch_h,patch_w,N_patches):
if(N_patches%(len(full_imgs))!=0):
print("N_patches: please enter a multiple of 115")
exit()
patches=np.empty((N_patches,patch_h,patch_w))
patches_masks = np.empty((N_patches,patch_h,patch_w))
img_h=full_imgs[0].shape[0]
img_w=full_imgs[0].shape[1]
patch_per_img=int(N_patches/(full_imgs.shape[0]))
print("patches per full image: "+str(patch_per_img))
iter_tot=0
for i in range(full_imgs.shape[0]):
k=0
while k<patch_per_img:
x_center = random.randint(0+int(patch_w/2),img_w-int(patch_w/2))
y_center = random.randint(0+int(patch_h/2),img_h-int(patch_h/2))
patch=full_imgs[i][y_center-int(patch_h/2):y_center+int(patch_h/2),x_center-int(patch_w/2):x_center+int(patch_w/2)]
patch_mask=full_masks[i][y_center-int(patch_h/2):y_center+int(patch_h/2),x_center-int(patch_w/2):x_center+int(patch_w/2)]
#print(patch_mask.shape)
patches[iter_tot]=patch
patches_masks[iter_tot]=patch_mask
iter_tot+=1
k+=1
return patches,patches_masks
def imagePadding(img):
img_h=img.shape[0]
img_w=img.shape[1]
scale=int(math.sqrt(img_h*img_h+img_w*img_w))
scale=scale*2
size=(int(scale),int(scale))
out=cv2.resize(img,size,interpolation=cv2.INTER_AREA)
return out
def get_data(data_imgs_org,
data_groundTruth,
patch_height,
patch_width,
N_subimgs):
imgs_org,imgs_groundTruth=ReadandProcessImage(data_imgs_org,data_groundTruth)
print('imgs.shape',imgs_org.shape)
print('imgs_groundTruth',imgs_groundTruth.shape)
patches_imgs_train,patches_masks_train=extract_random(imgs_org,
imgs_groundTruth,patch_height,patch_width,N_subimgs)
return patches_imgs_train,patches_masks_train
def ReadandProcessImage(orgImgPath,groundTruthPath):
images=[]
labels=[]
for root, dirs, files in os.walk(orgImgPath, topdown=False):
for file in files:
temp=file[:-4]
ImgPath=os.path.join(root,file)
LabelPath=os.path.join(groundTruthPath,temp+'.png')
myimg=cv2.imread(ImgPath,0)
mylabel=cv2.imread(LabelPath,0)
print('ImgPath:',ImgPath)
print('LabelPath:',LabelPath)
#img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY)
#mylabel=cv2.cvtColor(mylabel,cv2.COLOR_BGR2GRAY)
assert(len(myimg.shape)==len(mylabel.shape))
assert(myimg.shape[0]==mylabel.shape[0])
assert(myimg.shape[1]==mylabel.shape[1])
img=myimg
#org_h=img.shape[0]
#org_w=img.shape[1]
img=cv2.equalizeHist(img)
img=imagePadding(img)
mylabel=imagePadding(mylabel)
images.append(img)
labels.append(mylabel)
return np.array(images),np.array(labels)
def roatate_img_label_to_file(imgPath,labelPath):
global Iter
Iter=1
def rotateImg(img,label,orgHeight,orgWidth,imgPath,labelPath):
global Iter
(h,w)=img.shape
center=(h/2,w/2)
for i in range(360):
if (i%10!=0):
continue
M = cv2.getRotationMatrix2D(center, i, 1)
imgRotated = cv2.warpAffine(img, M, (h, w))
img0=imgRotated[int(center[0])-int(orgHeight/2):int(center[0])+int(orgHeight/2),
int(center[1])-int(orgWidth/2):int(center[1])+int(orgWidth/2)]
labelRotated = cv2.warpAffine(label, M, (h, w))
label0=labelRotated[int(center[0])-int(orgHeight/2):int(center[0])+int(orgHeight/2),
int(center[1])-int(orgWidth/2):int(center[1])+int(orgWidth/2)]
path0=os.path.join(imgPath,str(Iter+115)+'.jpg')
cv2.imwrite(path0,img0)
path=os.path.join(labelPath,str(Iter+115)+'.png')
cv2.imwrite(path,label0)
Iter=Iter+1
print("ROTATW DONE!!!!")
for root,dirs,files in os.walk(imgPath,topdown=False):
for file in files:
imgpath=os.path.join(root,file)
temp=file[:-4]
labelpath=os.path.join(labelPath,temp+'.png')
img=cv2.imread(imgpath,0)
label=cv2.imread(labelpath,0)
print('imgpath:',imgpath)
print('labelpath:',labelpath)
print('imgshape:',img.shape)
print('labelshape:',label.shape)
assert(len(img.shape)==len(label.shape))
assert(img.shape[0]==label.shape[0])
assert(img.shape[1]==label.shape[1])
org_h=img.shape[0]
org_w=img.shape[1]
img=imagePadding(img)
label=imagePadding(label)
print('imgPadding:',img.shape)
print('labelPadding:',label.shape)
rotateImg(img,label,org_h,org_w,imgPath,labelPath)
data_train_imgs_org="/home/chendali1/Gsj/JX/Image/train/"
data_test_imgs_org="/home/chendali1/Gsj/JX/Image/test/"
data_train_grountTruth="/home/chendali1/Gsj/JX/GT/train/"
data_test_grountTruth="/home/chendali1/Gsj/JX/GT/test/"
patches_path_train='/home/chendali1/Gsj/JX/Patches/Org/train/'
patches_path_test='/home/chendali1/Gsj/JX/Patches/Org/test/'
patches_path_label_train='/home/chendali1/Gsj/JX/Patches/Label/train/'
patches_path_label_test='/home/chendali1/Gsj/JX/Patches/Label/test/'
#rotate_train_imgs_path="/home/chendali1/Gsj/JX/Image/train/"
#rotate_test_imgs_path="/home/chendali1/Gsj/JX/Image/test/"
#rotate_train_label_path="/home/chendali1/Gsj/JX/GT/train/"
#rotate_test_label_path="/home/chendali1/Gsj/JX/GT/test/"
"""
if not os.path.exists(patches_path_train):
os.makedirs(patches_path_train)
if not os.path.exists(patches_path_test):
os.makedirs(patches_path_test)
if not os.path.exists(patches_path_label_train):
os.makedirs(patches_path_label_train)
if not os.path.exists(patches_path_label_test):
os.makedirs(patches_path_label_test)
roatate_img_label_to_file(data_train_imgs_org,data_train_grountTruth)
train_patches,train_groundTruth=get_data(data_train_imgs_org,data_train_grountTruth,224,224,37*115*10)
for i in range(train_patches.shape[0]):
b=np.zeros([train_patches.shape[1],train_patches.shape[2],3])
b[:,:,0]=train_patches[i,:,:]
b[:,:,1]=train_patches[i,:,:]
b[:,:,2]=train_patches[i,:,:]
cv2.imwrite(patches_path_train+str(i)+'.jpg',train_patches[i,:,:])
cv2.imwrite(patches_path_label_train+str(i)+'.png',train_groundTruth[i,:,:])
"""
Imgpath ="/home/chendali1/Gsj/JX/Patches/Org/train/"
Labelpath="/home/chendali1/Gsj/JX/Patches/Label/train/"
orgTrainPath="/home/chendali1/Gsj/DRIVE/images/training/"
orgTestPath="/home/chendali1/Gsj/DRIVE/images/validation/"
labelTrainPath="/home/chendali1/Gsj/DRIVE/annotations/training/"
labelTestPath="/home/chendali1/Gsj/DRIVE/annotations/validation/"
disOrdeImgs(Imgpath,Labelpath,orgTrainPath,orgTestPath,labelTrainPath,labelTestPath)
数据增强(每10度进行旋转,进行一次增强,然后对每张图片进行扩充10张patch,最后得到原始图片数*37*10数量的图片)的更多相关文章
- 剑指Offer - 九度1386 - 旋转数组的最小数字
剑指Offer - 九度1386 - 旋转数组的最小数字2013-11-24 01:57 题目描述: 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转.输入一个递增排序的数组的一个旋转 ...
- 360度3D 旋转插件
Circlr插件是一款基于jQuery的可以对图片进行360度全方位旋转展示的插件.Circlr通过按一定角度规律拍摄的产品图片,制作出可以使用鼠标拖动.鼠标滚轮和移动触摸来进行图片逐帧旋转的效果.比 ...
- 20145104张家明 《Java程序设计》第10周学习总结
20145104张家明 <Java程序设计>第10周学习总结 教材学习内容总结 网络编程 网络编程就是两个或多个设备(程序)之间的数据交换. 识别网络上的每个设备:①IP地址②域名(Dom ...
- html5人物图片360度立体旋转
体验效果:http://hovertree.com/texiao/html5/10.htm 下载:http://hovertree.com/hvtart/bjae/t16oddyt.htm 代码如下: ...
- VirtualBox 5.0.10 中 Fedora 23 在安装了增强工具后无法自动调节虚拟机分辨率的问题(改)
VirtualBox 5.0.10 中安装 Fedora 23,即使在安装了增强工具后,仍然会发现虚拟机无法根据 VirtualBox 的运行窗口大小自动进行分辨率调节.究其原因,主要是因为 Fedo ...
- 7. 进行图片的数据补全和增强(随机亮度,随机饱和度,随机翻转) Image.open(进行图片的读入) 2.ImageEnhance.Brightness(亮度变化) 3.ImageEnhance.Contrast(饱和度变化) 4.enhance_image.transpose(图片随机翻转) 5.enhance_image.save(进行图片保存)
1.Image.open(image_path) 进行图片的打开 参数说明:image_path 表示图片的路径 2. ImageEnhance.Brightness(image) # 进行图片的 ...
- MFC 编辑框输入16进制字符串转换为16进制数或者10进制数据计算
1.编辑框添加变量,并选择变量类型为CString. 2. 使用“_tcstoul”函数将Cstring 类型转换为16进制/10进制数进行计算.
- HTML实现图片360度循环旋转
<style> .header{ -webkit-animation:rotateImg 5s linear infinite;<!--修改旋转周期--> border: 1p ...
- (数据科学学习手札142)dill:Python中增强版的pickle
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 大家好我是费老师,相信不少读者朋友们都在Pyth ...
随机推荐
- python基础-----函数/装饰器
函数 在Python中,定义一个函数要使用def语句,依次写出函数名.括号.括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用return语句返回. 函数的优点之一是,可以将代码块与主程 ...
- 在Linux安装ASP.NET Core运行时环境
我使用的是Centos7 ,其它的Linux请参考微软文档 微软官方介绍文档: https://www.microsoft.com/n ...
- Liunx之始
作者:邓聪聪 本章是为了工作之需要,所做的一个学习心得,也为自己留下相关印记以便日后留用. 1:安装服务yum install ppp -yyum install pptpd -y由于yum源没有pp ...
- web服务器上某一中文名文件无法访问
只需要在此目录下 convmv -f GBK -t UTF-8 --notest *.xxx 执行这个命令即可
- python获取windows信息
转载自http://www.blog.pythonlibrary.org/2010/02/06/more-windows-system-information-with-python/ How to ...
- Apollo 框架的剖析1
百度Apollo 自动驾驶开源模块分析 从今天开始研究学习apollo的源码,apollo 3.0源码. apollo 3.0的系统框图 文件目录简介 apollo根目录 ├── .github/IS ...
- ThreadLocal与Synchronized区别
ThreadLocal和Synchonized都用于解决多线程并发访问他们两者的区别:synchronized是利用锁的机制,使变量或代码块在某一时该只能被一个线程访问,而ThreadLocal为每一 ...
- mysql 5.6升级到5.7.22
下载对应的包 wget https://cdn.mysql.com//Downloads/MySQL-5.7/mysql-5.7.22-linux-glibc2.12-x86_64.tar 备份数据 ...
- malloc(0)
malloc的内存分配之 malloc(0)的内存分配情况 #include<iostream> using namespace std; int main() { char *p; if ...
- java8 lambda方法引用
注意引用方法的参数列表与返回值类型要与函数式接口中的抽象方法的参数列表与返回值类型保持一致 主要有三种语法格式: * * 对象::实例方法名 * * 类::静态方法名 * * 类::实例方法名 pub ...