Introduction to boundary integral equations in BEM
Boundary element method (BEM) is an effective tool compared to finite element method (FEM) for resolving those electromagnetic field problems including open domain and/or complex models with geometric details, especially those having large dimensional scale difference. Its basic idea is to construct the solution of a partial differential equation (PDE), like the 2nd order Laplace equation, by using a representation formula derived from the Green's 2nd identity. By approaching this representation formula to the domain boundary with some presumption on potential continuity, boundary integral equation can be obtained. This article explains how this equation is derived and introduces four integral operators thereof.
Fundamental solution
Let \(\Omega\) be an open domain in \(\mathbb{R}{^n}\) with boundary \(\pdiff\Omega = \Gamma = \Gamma_D \cup \Gamma_N\) and \(u\) be the electric potential such that
\begin{equation} \begin{aligned} -\Delta u(x) &= 0 \quad \forall x \in \Omega \\ u(x) &= g \quad \forall x \in \Gamma_D \\ \pdiff_{\vect{n}} u(x) &= 0 \quad \forall x \in \Gamma_N \end{aligned}. \label{eq:laplace-problem} \end{equation}
The fundamental solution to the above Laplace operator is
\begin{equation} \gamma(x) = \begin{cases} -\frac{1}{2\pi}\log\lvert x \rvert & (n = 2) \\ \frac{\lvert x \rvert^{2-n}}{(n-2)\omega_{n}} & (n > 2) \end{cases}, \label{eq:fundamental-solution} \end{equation}
where \(n\) is the space dimension and \(\omega_n = \frac{2\pi^{n/2}}{\Gamma(n/2)}\). The fundamental solution is the potential response caused by a source charge density with unit Dirac distribution centered at the origin.
Representation formula
The electric potential distribution \(u\) in the domain \(\Omega\) can be represented as a combination of double and single layer potentials as
\begin{equation} u(x) = \int_{\Gamma} \pdiff_{\vect{n}(y)}[\gamma(x,y)] \left[ u(y) \right]_{\Gamma} \intd o(y) - \int_{\Gamma} \gamma(x,y) \left[ \pdiff_{\vect{n}(y)} u(y) \right]_{\Gamma} \intd o(y) \quad (x \in \Omega), \label{eq:representation-formula} \end{equation}
where \(\gamma(x, y) = \gamma(x - y)\), \(\vect{n}(y)\) is the outward unit normal vector at \(y \in \Gamma\), \(\intd o(y)\) is the surface integral element with respect to coordinate \(y\) and \([\cdot]_{\Gamma}\) represents the jump across the boundary \(\Gamma\), which is defined as
$$ [u(x)]_{\Gamma} = u\big\vert^{+}_{\vect{n}(x)} - u\big\vert^{-}_{\vect{n}(x)}. $$
Remark
- It can be seen that the electric potential \(u\) in the domain \(\Omega\) is represented as a convolution between the fundamental solution \(\gamma(x)\) and source layer charges configured on the domain boundary \(\Gamma\), which is the same as the convolution between an unit impulse response function and source excitation exhibited in electric circuit theory. The difference is for the electrostatic Laplace problem, the convolution is carried out in space domain, while in circuit theory it is in time domain.
- Convolution implies that a system's response should be linearly dependent on the source excitation. Therefore, the total response can be given as a linear superposition of the contributions from continuously distributed sources.
- Accordingly, the medium described by the PDE should be linear, homogeneous (spatial invariant) and time invariant. We should also note that if the medium's parameter is inhomogeneous but time invariant, hence the response linearly depends on a source located at a specified position. Then the fundamental solution changes its form when the source changes position. This is because the space loses symmetry.
Because the representation formula is a corner stone for BEM, BEM can only be used for linear and homogeneous medium. In addition, BEM can handle open domain problem. These two factors render BEM quite suitable for solving electromagnetic field problems with a large air box, which are usually difficult for FEM.
Boundary integral equation and integral operators
If we assume a constant zero field condition outside the domain \(\Omega\), i.e. \(u(x) \big\vert_{\mathbb{R}^n\backslash\Omega} \equiv 0\), which is called direct method, the representation formula becomes
\begin{equation} u(x) = -\int_{\Gamma} \pdiff_{\vect{n}(y)} \left[\gamma(x,y)\right] u(y) \intd o(y) + \int_{\Gamma} \gamma(x,y) \pdiff_{\vect{n}(y)} u(y) \intd o(y) \quad (x \in \Omega). \label{eq:representation-formula-zero-field-cond} \end{equation}
Its normal derivative is
\begin{equation} \pdiff_{\vect{n}(x)} u(x) = -\int_{\Gamma} \pdiff_{\vect{n}(x)} \left\{ \pdiff_{\vect{n}(y)}[\gamma(x,y)] \right\} u(y) \intd o(y) + \int_{\Gamma} \pdiff_{\vect{n}(x)} \left[ \gamma(x,y) \right] \pdiff_{\vect{n}(y)} u(y) \intd o(y) \quad (x \in \Omega). \label{eq:normal-derivative-formula-zero-field-cond} \end{equation}
When \(u(x)\) and \(\pdiff_{\vect{n}(x)} u(x)\) approach to the boundary \(\Gamma_D\) and \(\Gamma_N\) respectively, the Cauchy data 1 are obtained, which specify both the function value and normal derivative on the boundary of the domain. They can be used to match the already given Dirichlet and homogeneous Neumann boundary conditions in \eqref{eq:laplace-problem} and hence the boundary integral equation can be obtained. However, before presenting its formulation, we need to clarify the behavior of single and double layer potentials near the boundary.
When approaching to the boundary, the single layer potential $$ \int_{\Gamma} \gamma(x,y) \pdiff_{\vect{n}(y)} u(y) \intd o(y) \quad (x \in \Omega) $$ in \eqref{eq:representation-formula-zero-field-cond} is continuous across the boundary \(\Gamma\). For simplicity, let \(t(y) = \pdiff_{\vect{n}(y)} u(y)\) and define an integral operator \(V\) to represent this component as $$ Vt = (Vt(y))(x) = \int_{\Gamma} \gamma(x,y) \pdiff_{\vect{n}(y)} u(y) \intd o(y). $$
The double layer potential $$ \int_{\Gamma} \pdiff_{\vect{n}(y)} \left[\gamma(x,y)\right] u(y) \intd o(y) $$ in \eqref{eq:representation-formula-zero-field-cond} depends on from which direction, i.e. interior or exterior, it approaches to the boundary. This discontinuous behavior is governed by the following theorem.
Theorem Let \(\phi \in C(\Gamma)\) be the double layer charge density and $u(x)$ be the double layer potential, which is given as $$ u(x) = \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \quad (x \in \Omega), $$ where \(K(x, y) = \pdiff_{\vect{n}(y)} \left[\gamma(x,y)\right]\). The restrictions of \(u\) to \(\Omega\) and \(\Omega' = \mathbb{R}^n\backslash\Omega\) both have continuous extension to \(\overline{\Omega}\) and \(\overline{\Omega}'\) respectively. Then \(u_{\varepsilon}(x) = u(x + \varepsilon \vect{n}(x))\) with \(x \in \Gamma\) converges uniformly to \(u_{-}\) and \(u_{+}\) when \(\varepsilon \longrightarrow 0^{-}\) and \(\varepsilon \longrightarrow 0^{+}\), where
\begin{equation} \begin{aligned} u_{-}(x) &= -\frac{1}{2} \phi(x) + \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \\ u_{+}(x) &= \frac{1}{2} \phi(x) + \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \end{aligned} \quad (x \in \Gamma). \end{equation}
We then define the compact integral operator \(T_K\) as follows, which maps a bounded function to continuous function:
\begin{equation} T_K\phi(x) = (T_K\phi(y))(x) = \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \quad (x \in \Gamma). \label{eq:tk-operator} \end{equation}
For the components in the normal derivative of the representation formula in Equation \eqref{eq:normal-derivative-formula-zero-field-cond}, we introduce an integral operator \(D\) with a hyper-singular kernel as $$ Du = -\int_{\Gamma} \pdiff_{\vect{n}(x)} \left\{ \pdiff_{\vect{n}(y)}[\gamma(x,y)] \right\} u(y) \intd o(y). $$ Then let $K^{*}(x, y) = \pdiff_{\vect{n}(x)} \left[\gamma(x,y)\right] $, which has the following property:
\begin{equation} K^{*}(x, y) = K(y, x) = -K(x, y). \label{eq:symmetry-of-k} \end{equation}
Let $$ \psi(x) = \int_{\Gamma} K^{*}(x, y) \phi(y) \intd o(y) \quad (x \in \Omega) $$ approach to the boundary, we have similar results as the above theorem:
\begin{equation} \begin{aligned} \psi_{-}(x) &= \frac{1}{2} \phi(x) + \int_{\Gamma} K^{*}(x, y) \phi(y) \intd o(y) \\ \psi_{+}(x) &= -\frac{1}{2} \phi(x) + \int_{\Gamma} K^{*}(x, y) \phi(y) \intd o(y) \end{aligned} \quad (x \in \Gamma). \end{equation}
Then a new compact integral operator \(T_{K^{*}}\) is defined as
\begin{equation} T_{K^{*}}\phi(x) = (T_{K^{*}}\phi(y))(x) = \int_{\Gamma} K^{*}(x, y) \phi(y) \intd o(y) \quad (x \in \Gamma). \label{eq:tk-star-operator} \end{equation}
Up to now, we have defined four integral operators, \(V\), \(D\), \(T_K\) and \(T_{K^{*}}\). We further introduce Calderón projector, i.e. the Dirichlet-trace \(\gamma_0\) and the Neumann-trace \(\gamma_1\), which are defined as
\begin{equation} \begin{aligned} \gamma_0[u](x) &=\lim_{\varepsilon \rightarrow 0^{-}} u(x + \varepsilon\vect{n}(x)) \\ \gamma_1[u](x) &= \lim_{\varepsilon \rightarrow 0^{-}} t(x + \varepsilon\vect{n}(x)) \end{aligned} \quad (x \in \Gamma). \label{eq:calderon-projector} \end{equation}
Finally, the boundary integral equations can be represented as
\begin{equation} \begin{cases} \gamma_0[u] = \frac{1}{2}\gamma_0[u] - T_K \gamma_0[u] + V\gamma_1[u] \\ \gamma_1[u] = D\gamma_0[u] + \frac{1}{2}\gamma_1[u] + T_{K^{*}} \gamma_1[u] \end{cases} \quad (x \in \Gamma). \label{eq:boundary-integral-equations} \end{equation}
It is more compact if written in matrix form:
\begin{equation} \begin{pmatrix} \gamma_0[u] \\ \gamma_1[u] \end{pmatrix} = \begin{pmatrix} \frac{1}{2}I - T_K & V \\ D & \frac{1}{2}I + T_{K^{*}} \end{pmatrix} \begin{pmatrix} \gamma_0[u] \\ \gamma_1[u] \end{pmatrix} \quad (x \in \Gamma). \label{eq:boundary-integral-equations-in-matrix-form} \end{equation}
Summary
In this article, we introduced the corner stones of BEM, namely fundamental solution, representation formula and boundary integral equations. The convolution concept adopted in the representation formula is explained and clarified. By introducing four integral operators, \(V\), \(D\), \(T_K\) and \(T_{K^{*}}\), the boundary integral equations are obtained in a compact matrix form. In our next post, we'll reveal more properties of the two compact operators \(T_K\) and \(T_{K^{*}}\), which are a pair of adjoint operators in the variational formulation of the boundary integral equations, and are conjugate transpose to each other in the Galerkin discretization.
References
1 “Cauchy Boundary Condition.” 2017. Wikipedia. https://en.wikipedia.org/w/index.php?title=Cauchy_boundary_condition&oldid=775884091.
Introduction to boundary integral equations in BEM的更多相关文章
- Adjoint operators $T_K$ and $T_{K^{*}}$ in BEM
In our last article, we introduced four integral operators in the boundary integral equations in BEM ...
- [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答
1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...
- Theorems for existence and uniqueness of variational problem
Introduction Among simulation engineers, it is well accepted that the solution of a PDE can be envis ...
- A Personal Selection of Books on E lectromagnetics and Computational E lectromagnetics---David B. Davidson
链接. General Books on Electromagnetics When our department recently reviewed our junior-level text, w ...
- 数学类杂志SCI2013-2014影响因子
ISSN Abbreviated Journal Title Full Title Category Subcategory Country total Cites IF 2013-20 ...
- mit课程ocw-mathematics
https://ocw.mit.edu/courses/find-by-topic/#cat=mathematics Course # Course Title Level 1.010 Uncerta ...
- 以数之名:In Praise of APL 后记
原文:http://www.jsoftware.com/papers/perlis77.htm 标题:In Praise of APL: A Language for Lyrical Programm ...
- A Multigrid Tutorial中涉及到的难点词汇
Multigrid Tutorial中涉及的词汇: Elliptic PDEs 椭圆型偏微分方程 Lawrence Livermore National Laboratory 劳伦斯利福摩尔国家实验室 ...
- Maple拥有优秀的符号计算和数值计算能力
https://www.maplesoft.com/products/maple/ Maple高级应用和经典实例: https://wenku.baidu.com/view/f246962107221 ...
随机推荐
- gnutls-3.5.18 static building for windows
gnutls-3.5.18 static building for windows Required libraries:1. libnettle 2. gmplib Optional librari ...
- jquery datetimepicker
1.详细说明见:https://xdsoft.net/jqplugins/datetimepicker/ 语言选择中文,现在lang配置已经失效;可用: $.datetimepicker.setLoc ...
- druid:java代码创建连接池
PropertiesDB 是一个读取配置文件的类,也可以不用,每个参数直接用String代替. public DataSource dataSource(PropertiesDB properties ...
- c# 操作Word总结(车)
在医疗管理系统中为保存患者的体检和治疗记录,方便以后的医生或其他人查看.当把数据保存到数据库中,需要新建很多的字段,而且操作很繁琐,于是想到网页的信息创建到一个word文本中,在显示的时,可以在线打开 ...
- Confluence 6 修改你站点的外观和感觉
你可以为你的 Confluence 整个站点修改表现以及外观和感觉,也可以为单独的空间进行修改. 对整个站点进行的修改将会对使用全局外观和感觉(look and feel)的空间一并进行修改.如果某个 ...
- Swift 设置某个对象的normal 属性找不到normal 解决方案
normal 等价于 UIControlState(rawValue: 0)
- shell中的ps命令详解
ps简介:Linux中的ps命令是Process Status的缩写.ps命令用来列出系统中当前运行的那些进程.ps命令列出的是当前那些进程的快照,就是执行ps命令的那个时刻的那些进程,如果想要动态的 ...
- python并发编程之多进程1-----------互斥锁与进程间的通信
一.互斥锁 进程之间数据隔离,但是共享一套文件系统,因而可以通过文件来实现进程直接的通信,但问题是必须自己加锁处理. 注意:加锁的目的是为了保证多个进程修改同一块数据时,同一时间只能有一个修改,即串行 ...
- JSP 指令 脚本元素 表达式 声明
一.page指令 1. 可以使用page指令来控制JSP转换器转换当前JSP页 面的某些方面.例如,可以告诉JSP用于转换隐式对象 out的缓冲器的大小.内容类型,以及需要导入的Java 类型,等等. ...
- antDesign 使用Form并进行表单验证
import React from 'react'; import {Form,Input,Select,Button ...} from 'antd'; class PageName extends ...