Input our current position and a destination, an online map can recommend several paths. Now your job is to recommend two paths to your user: one is the shortest, and the other is the fastest. It is guaranteed that a path exists for any request.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers N (2 <= N <= 500), and M, being the total number of streets intersections on a map, and the number of streets, respectively. Then M lines follow, each describes a street in the format:

V1 V2 one-way length time

where V1 and V2 are the indices (from 0 to N-1) of the two ends of the street; one-way is 1 if the street is one-way from V1 to V2, or 0 if not; length is the length of the street; and time is the time taken to pass the street.

Finally a pair of source and destination is given.

Output Specification:

For each case, first print the shortest path from the source to the destination with distance D in the format:

Distance = D: source -> v1 -> ... -> destination

Then in the next line print the fastest path with total time T:

Time = T: source -> w1 -> ... -> destination

In case the shortest path is not unique, output the fastest one among the shortest paths, which is guaranteed to be unique. In case the fastest path is not unique, output the one that passes through the fewest intersections, which is guaranteed to be unique.

In case the shortest and the fastest paths are identical, print them in one line in the format:

Distance = D; Time = T: source -> u1 -> ... -> destination

Sample Input 1:

10 15
0 1 0 1 1
8 0 0 1 1
4 8 1 1 1
3 4 0 3 2
3 9 1 4 1
0 6 0 1 1
7 5 1 2 1
8 5 1 2 1
2 3 0 2 2
2 1 1 1 1
1 3 0 3 1
1 4 0 1 1
9 7 1 3 1
5 1 0 5 2
6 5 1 1 2
3 5

Sample Output 1:

Distance = 6: 3 -> 4 -> 8 -> 5
Time = 3: 3 -> 1 -> 5

Sample Input 2:

7 9
0 4 1 1 1
1 6 1 1 3
2 6 1 1 1
2 5 1 2 2
3 0 0 1 1
3 1 1 1 3
3 2 1 1 2
4 5 0 2 2
6 5 1 1 2
3 5

Sample Output 2:

Distance = 3; Time = 4: 3 -> 2 -> 5
 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
const int INF = ;
int GL[][], GT[][];
int dst[], visit[];
vector<int> pre1[], pre2[];
int N, M, sour, destn;
void dijkstra(int G[][], vector<int> pre[], int s){
fill(dst, dst + , INF);
fill(visit, visit + , );
dst[s] = ;
for(int i = ; i < N; i++){
int u = -, minLen = INF;
for(int j = ; j < N; j++){
if(dst[j] < minLen && visit[j] == ){
minLen = dst[j];
u = j;
}
}
if(u == -){
return;
}
visit[u] = ;
for(int j = ; j < N; j++){
if(visit[j] == && G[u][j] != INF){
if(G[u][j] + dst[u] < dst[j]){
dst[j] = G[u][j] + dst[u];
pre[j].clear();
pre[j].push_back(u);
}else if(G[u][j] + dst[u] == dst[j]){
pre[j].push_back(u);
}
}
}
}
}
int minTime = INF, minLen = INF;
vector<int> ans1, ans2, temp1, temp2;
void DFS1(int d){ //函数前初始化minTime、minLen
temp1.push_back(d);
if(d == sour){
int tempL = , tempT = ;
for(int i = temp1.size() - ; i > ; i--){
tempL += GL[temp1[i]][temp1[i - ]];
tempT += GT[temp1[i]][temp1[i - ]];
}
if(tempL < minLen){
minLen = tempL;
minTime = tempT;
ans1 = temp1;
}else if(tempL == minLen && tempT < minTime){
minLen = tempL;
minTime = tempT;
ans1 = temp1;
}
} for(int i = ; i < pre1[d].size(); i++){
DFS1(pre1[d][i]);
}
temp1.pop_back();
}
void DFS2(int d){
temp2.push_back(d);
if(d == sour){
int tempL = , tempT = ;
for(int i = temp2.size() - ; i > ; i--){
tempL += GL[temp2[i]][temp2[i - ]];
tempT += GT[temp2[i]][temp2[i - ]];
}
if(tempT < minTime){
ans2 = temp2;
minTime = tempT;
minLen = tempL;
}else if(tempT == minTime && temp2.size() < ans2.size()){
ans2 = temp2;
minTime = tempT;
minLen = tempL;
}
}
for(int i = ; i < pre2[d].size(); i++){
DFS2(pre2[d][i]);
}
temp2.pop_back();
}
int main(){
scanf("%d%d", &N, &M);
fill(GL[], GL[] + *, INF);
fill(GT[], GT[] + *, INF);
for(int i = ; i < M; i++){
int tag, v1, v2, L, T;
scanf("%d%d%d%d%d", &v1, &v2, &tag, &L, &T);
if(tag == ){
GL[v1][v2] = L;
GT[v1][v2] = T;
}else{
GL[v1][v2] = GL[v2][v1] = L;
GT[v1][v2] = GT[v2][v1] = T;
}
}
scanf("%d%d", &sour, &destn);
dijkstra(GL, pre1, sour);
dijkstra(GT, pre2, sour);
minTime = INF; minLen = INF;
DFS1(destn);
int prtLen = minLen;
minTime = INF; minLen = INF;
DFS2(destn);
int prtTim = minTime;
if(ans1 == ans2){
int LL = ans1.size();
printf("Distance = %d; Time = %d: %d", prtLen, prtTim, ans1[LL - ]);
for(int i = LL - ; i >= ; i--){
printf(" -> %d", ans1[i]);
}
}else{
int LL1 = ans1.size(), LL2 = ans2.size();
printf("Distance = %d: %d", prtLen, ans1[LL1 - ]);
for(int i = LL1 - ; i >= ; i--){
printf(" -> %d", ans1[i]);
}
printf("\n");
printf("Time = %d: %d", prtTim, ans2[LL2 - ]);
for(int i = LL2 - ; i >= ; i--){
printf(" -> %d", ans2[i]);
}
}
cin >> N;
return ;
}

总结:

1、题意:用路程作为边权,求最短路径,如果有多条则输出耗时最短的。 再用时间作为边权求最短路,如果有多条则输出经过节点个数最少的。使用两次迪杰斯特拉和DFS即可。最开始没读清题,以为以时间为边权求最短路,如果有多条则选择路程最短的,结果测试点2过不去。

2、注意one-way是单行道标志,为1表示只有v1到v2的路,为0表示v1到v2和v2到v1都是通的。注意有些是单向路径,有些是双向。另外,由于DFS回溯时得到的路径是倒着的、有些路是单向的,所以在累加边权时也是倒序的,是 GL[temp1[i]][temp1[i - 1]]  而非 GL[temp1[i - 1]][temp1[ i ]]。

A1111. Online Map的更多相关文章

  1. PAT A1111 Online Map (30 分)——最短路径,dijkstra

    Input our current position and a destination, an online map can recommend several paths. Now your jo ...

  2. PAT甲级——A1111 Online Map【30】

    Input our current position and a destination, an online map can recommend several paths. Now your jo ...

  3. 【刷题-PAT】A1111 Online Map (30 分)

    1111 Online Map (30 分) Input our current position and a destination, an online map can recommend sev ...

  4. PAT_A1111#Online Map

    Source: PAT A1111 Online Map (30 分) Description: Input our current position and a destination, an on ...

  5. PAT (Advanced Level) Practice(更新中)

    Source: PAT (Advanced Level) Practice Reference: [1]胡凡,曾磊.算法笔记[M].机械工业出版社.2016.7 Outline: 基础数据结构: 线性 ...

  6. PAT甲级题解分类byZlc

    专题一  字符串处理 A1001 Format(20) #include<cstdio> int main () { ]; int a,b,sum; scanf ("%d %d& ...

  7. 1111 Online Map (30 分)

    1111 Online Map (30 分) Input our current position and a destination, an online map can recommend sev ...

  8. mapreduce中一个map多个输入路径

    package duogemap; import java.io.IOException; import java.util.ArrayList; import java.util.List; imp ...

  9. .NET Core中间件的注册和管道的构建(3) ---- 使用Map/MapWhen扩展方法

    .NET Core中间件的注册和管道的构建(3) ---- 使用Map/MapWhen扩展方法 0x00 为什么需要Map(MapWhen)扩展 如果业务逻辑比较简单的话,一条主管道就够了,确实用不到 ...

随机推荐

  1. ResultHandler的用法

    ResultHandler,顾名思义,对返回的结果进行处理,最终得到自己想要的数据格式或类型.也就是说,可以自定义返回类型.下面通过一个例子讲解它的使用方法: 创建Goods实体类: public c ...

  2. js中获取当前项目名等

    实际上通过window.location可以获取很多跟资源路径相关的信息,需要用到的时候直接通过浏览器调试可以查看window.location的一些属性

  3. Java-Spring-获取Request,Response对象

    转载自:https://www.cnblogs.com/bjlhx/p/6639542.html 第一种.参数 @RequestMapping("/test") @Response ...

  4. js对json解析获取对应属性的值,JSON.stringify()和JSON.parse()

    JSON.stringify() 该方法,将一个JSON对象转化为字符串string JSON.parse() 该方法,将一个字符串转化为JSON对象object 对于JSON对象,获取其对应键值 可 ...

  5. windows git支持arc命令

    本文整理了在Windows系统上安装代码审查工具Arcanist的过程.目的是配合Phabricator进行代码review.配置成功后可使用arc diff命令来发起code review. 1.安 ...

  6. Ajax 调用的WCF

    支持ajax 跨域调用的WCF搭建 1.新建一个"ASP.NET空Web应用程序"项目. 2.新建一个“WCF服务(支持ajax)”. 3.修改WCFAjaxService.svc ...

  7. HTTP协议【详解】——经典面试题

    http请求由三部分组成,分别是:请求行.消息报头.请求正文 HTTP(超文本传输协议)是一个基于请求与响应模式的.无状态的.应用层的协议,常基于TCP的连接方式,HTTP1.1版本中给出一种持续连接 ...

  8. java http 伪造请求头

    import java.io.BufferedReader; import java.io.InputStream; import java.io.InputStreamReader; import ...

  9. python optparser模块

    python的内置模块中对于命令行的解析模块共两个getopt 和 optparse .不过getopt过于简单,往往不能满足需求.此时可以使用optparse模块.这个模块相对于getopt更新,功 ...

  10. BZOJ5037[Jsoi2014]电信网络——最大权闭合子图

    题目描述 JYY创建的电信公司,垄断着整个JSOI王国的电信网络.JYY在JSOI王国里建造了很多的通信基站.目前所有的基站 都是使用2G网络系统的.而现在3G时代已经到来了,JYY在思考,要不要把一 ...