Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.

We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.



Figure A Sample Input of Radar Installations

Input

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.

The input is terminated by a line containing pair of zeros

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

Sample Input

3 2
1 2
-3 1
2 1 1 2
0 2 0 0

Sample Output

Case 1: 2
Case 2: 1 题目大意:
就是给你n组数据和圆的半径d,让你在x轴上画半径为d的圆,问:如果将所有的点都画进去,最少需要多少个圆,这个题目和导弹拦截有点像,不过更加简单 思路:
就是先判断d是不是大于等于0,如果d<0,肯定是输出-1的,
之后输入数字,如果有坐标的纵坐标比d还要大,那么也是不对的也要输出-1
之后对坐标进行处理,把每一个坐标在x轴上的范围标记出来,并进行排序,先排右边的位置,右边位置越小就排在越前面,因为我们是要从横坐标左边往右边排
如果右边相同,就排左边,左边大的先排,因为区间范围小的肯定可以把区间范围大的包括进去,反之则不行。
排完序之后
就开始画圈圈。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <iostream>
using namespace std;
const int maxn=1010;
struct node
{
double l,r;
}exa[maxn];
bool cmp(node a,node b)
{
if(a.r==b.r) return a.l>b.l;
return a.r<b.r;
} int main()
{
int n,cnt=0;;
double d,a,b;
while(scanf("%d%lf",&n,&d)!=EOF&&(n+d))
{
bool flag=0;
if(d>=0) flag=1;
for(int i=0;i<n;i++)
{
scanf("%lf%lf",&a,&b);
if(b>d) flag=0;
if(flag)
{
exa[i].l=a-sqrt(d*d-b*b);
exa[i].r=a+sqrt(d*d-b*b);
}
}
sort(exa,exa+n,cmp);
int ans=-1;
if(flag)
{
ans=1;
double maxr=exa[0].r;
for(int i=1;i<n;i++)
{
if(exa[i].l>maxr)
{
ans++;
maxr=exa[i].r;
}
}
}
cout << "Case " << ++cnt << ": " << ans << endl;
}
return 0;
}

  

												

贪心——D - Radar Installation的更多相关文章

  1. 贪心 + 计算几何 --- Radar Installation

    Radar Installation Description Assume the coasting is an infinite straight line. Land is in one side ...

  2. 贪心 POJ 1328 Radar Installation

    题目地址:http://poj.org/problem?id=1328 /* 贪心 (转载)题意:有一条海岸线,在海岸线上方是大海,海中有一些岛屿, 这些岛的位置已知,海岸线上有雷达,雷达的覆盖半径知 ...

  3. poj 1328 Radar Installation(贪心)

    Description Assume the coasting is an infinite straight line. Land is in one side of coasting, sea i ...

  4. poj 1328 Radar Installation (简单的贪心)

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 42925   Accepted: 94 ...

  5. POJ--1328 Radar Installation(贪心 排序)

    题目:Radar Installation 对于x轴上方的每个建筑 可以计算出x轴上一段区间可以包含这个点 所以就转化成 有多少个区间可以涵盖这所有的点 排序之后贪心一下就ok 用cin 好像一直t看 ...

  6. POJ 1328 Radar Installation 贪心 A

    POJ 1328 Radar Installation https://vjudge.net/problem/POJ-1328 题目: Assume the coasting is an infini ...

  7. 【贪心】「poj1328」Radar Installation

    建模:二维转一维:贪心 Description Assume the coasting is an infinite straight line. Land is in one side of coa ...

  8. POJ 1328 Radar Installation 【贪心 区间选点】

    解题思路:给出n个岛屿,n个岛屿的坐标分别为(a1,b1),(a2,b2)-----(an,bn),雷达的覆盖半径为r 求所有的岛屿都被覆盖所需要的最少的雷达数目. 首先将岛屿坐标进行处理,因为雷达的 ...

  9. Radar Installation(贪心)

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 56826   Accepted: 12 ...

随机推荐

  1. tomcat开启自启动

    linux方式 #!/bin/bash #chkconfig: #description: Starts and Stops the Tomcat daemon. #by benjamin ##### ...

  2. [PHP]算法-二进制中1的个数的PHP实现

    二进制中1的个数: 输入一个整数,输出该数二进制表示中1的个数.其中负数用补码表示. 思路: 1.右移位运算>> 和 与运算& 2.先移位个然后再与1 &运算为1的就是1 ...

  3. mybatis_ The content of element type association must match (constructor,id,result,ass ociation,collection,discriminator)

    一般遇到这种问题肯定要看一看association中元素编写顺序, <resultMap id="orderRslMap" type="orders"&g ...

  4. mybatis缓存机制

    目录 mybatis缓存机制 Executor和缓存 一级缓存 小结 二级缓存 小结 mybatis缓存机制 mybatis支持一.二级缓存来提高查询效率,能够正确的使用缓存的前提是熟悉mybatis ...

  5. springboot之scheduled任务调度

    springboot整合Scheduled可以方便的进行任务调度,话不多说,直接上代码 package com.rookie.bigdata; import org.springframework.b ...

  6. Mobius反演的套路

    T1 \(\sum_{i=1}^N \sum_{j=1}^M [(i,j)=1]\) \(f(d)=\sum_{i=1}^N \sum_{j=1}^M [(i,j)=d]\) \(g(d)=\sum_ ...

  7. BZOJ3453: tyvj 1858 XLkxc(拉格朗日插值)

    题意 题目链接 Sol 把式子拆开,就是求这个东西 \[\sum_{i = 0} ^n \sum_{j = 1}^{a + id} \sum_{x =1}^j x^k \pmod P\] 那么设\(f ...

  8. django(python manage.py imgrate)同步数据库出错后的解决办法

    问题 很多情况下,因为app的models.py的文件内容有误,但是通过python   manage.py    check检查不出来时,当执行python   manage.py    migra ...

  9. Jenkins 安装 on centos7

    本文演示如何在CentOS7上安装jenkins. 1 准备工作 1.1 选择安装节点 因为在DevOps实践环境搭建规划中,Jenkins的任务需要执行docker swarm的相关命令,简单起见, ...

  10. Spark性能优化【Stack Overflow】

    一.异常情况 Stack Overflow 二.异常分析 之所以会产生Stack Overflow,原因是在Stack方法栈中方法的调用链条太长的原因导致的,一般情况有两种: 1.过于深度的递归[常见 ...