py使用笔记-pandas函数
1,nan替换为0
df = df(np.nan, 0, regex=True)
2.inf替换为0
df= df(np.inf, 0.0, regex=True)
3.从数据库读取数据到dataframe
info_detail = pd.read_sql(sql_detail+"'"+version+"'", pyodbc.connect(CONFIG_IN_LCD))
4.从dataframe中取其中需要的几列
info = info_detail.loc[:,['version','Eventid','sn','NOISECNT','BLOCKMICCNT','HIGHBLOCKMICCNT', 'WINDCNT','HappenTime']]
5.groupby //其他列求和
info_sum_version = audio_info.groupby(['version','EVENTID']).sum().reset_index()
groupby后,添加一列num作为统计值
single = single.groupby(['version','eventId','bsd_grade','projectId','versionId']).size().to_frame(name='num').reset_index()
6.合并 merge,求交集
info_sum_version = pd.mergeinfo_sum_version version_map, how='inner', on='version', indicator=True).drop('_merge', axis=1)
7.dataframe添加一列
audio_info['type'] = 0
8.计算得出某一列的值
audio_info['blockmicrate'] = np.divide(audio_info['BLOCKMICCNT'] * 100.0, audio_info['NOISECNT'] * 1.0)
9.过滤:按照某一列的条件过滤
audio_info = audio_info[audio_info['blockmicrate'] > 50.0]
多个条件过滤,必须同时满足两个条件:
single = audio_info[(audio_info['UBSD_GRADE']==1) & (audio_info['UBSD_PHENOMENON']==1)]
多个条件过滤,只要满足其中一个条件即可:
single = single_position[(single_position['bsd_cause'] ==3)|(single_position['bsd_cause'] ==2)]
10.规范字段
audio_info.columns = ['version','eventId','happenTime','noisecnt','projectId','versionId']
11.判断一个dataframe是否为空
方法一:audio_info.empty
方法二:len(audio_info_sum_version) > 0 //这个方法还可以计算dataframe的行数
12.计算dataframe的行数
single_num = single.iloc[:,0].size
13.创建一个空的dataframe并向dataframe中添加新的列
bsd_version_count = pd.DataFrame({"version":version},index=["0"])
bsd_version_count['type'] = "单通"
14.dataframe求并集
adjust_user.columns = ['md5SN','sn', 'version', 'adjustTimes', 'projectId', 'versionId']
adjust_duration.columns = ['sn', 'version', 'duration', 'projectId', 'versionId']
adjust_user = pd.merge(adjust_duration,adjust_user,how='outer', on=['sn','version','projectId', 'versionId'], indicator=True).drop('_merge', axis=1)
adjust_user = adjust_user.replace(np.nan, 0.0, regex=True)
合并后把nan设置为0
15.dataframe行拼接
userInfo_max = userInfo[np.divide(userInfo['adjustTimes']*3600*1000.0,userInfo['duration']*1.0) <0.1].groupby(['version']).size().to_frame(name='userNum').reset_index()
userInfo_max.insert(1, 'FEATURE_MARKER', 1) # 加入 defect type
userInfo_mid = userInfo[np.logical_and(np.divide(userInfo['adjustTimes']*3600*1000.0,userInfo['duration']*1.0) >= 0.1, np.divide(userInfo['adjustTimes']*3600*1000.0,userInfo['duration']*1.0) < 0.3 )].groupby(['version']).size().to_frame(name='userNum').reset_index()
userInfo_mid.insert(1, 'FEATURE_MARKER', 2) # 加入 defect type
userInfo_min = userInfo[np.divide(userInfo['adjustTimes']*3600*1000.0,userInfo['duration']*1.0) >= 0.3].groupby(['version']).size().to_frame(name='userNum').reset_index()
userInfo_min.insert(1, 'FEATURE_MARKER', 3) # 加入 defect type
# 用户对焦情况信息(按区间)
userInfo_adjust = userInfo_max
if (len(userInfo_mid) > 0):
userInfo_adjust = userInfo_adjust.append(userInfo_mid)
if (len(userInfo_min) > 0):
userInfo_adjust = userInfo_adjust.append(userInfo_min)
userInfo_adjust['FEATURE'] = 'LCD'
userInfo_adjust['DEFECT_TYPE'] = 'LIGHTADJUST'
16.处理dataframe中某一列的数据
com.tencent.mobileqq#10000 转成 com.tencent.mobileqq
version_app_info['HEATINGAPP__FORENAME__NAME'] = version_app_info['HEATINGAPP__FORENAME__NAME'].apply(lambda x :x.split('#')[:1][0])
17.
-----------------------------------------------------------------------------------------------------------
函数:
一.import sqlalchemy as sa 相当于ORM框架
1.初始化数据库连接:
engine = sa.create_engine("mssql+pyodbc://?driver=SQL+Server+Native+Client+10.0")
2.使用连接:向数据库插入数据,删除数据
二.import pandas as pd 数据处理
1.生成数据表
version_map = pd.read_sql(getSysVersionInfo(version), pyodbc.connect(CONFIG_IFOCUS54_NEW))
2.数据表信息查看
维度查看: df.shape
数据表基本信息:df.info()
查看列名称:df.columns
查看前10行,后10行数据:df.head() df.tail()
3.数据表清洗
用数字0填充空值 : df.fillna(value = 0)
清除city字段的空字符空格 :df['city'] = df['city'].map(str.strip)
大小写转换:df['city'] = df['city'].str.lower()
某一列的均值: df['price'].mean()
更改列名:df.rename(columns = {'name':'newName'})
4.数据预处理:
数据表合并--交集:df_inner = pd.merge(df,df1,how='inner',on=['version']).drop('_merge', axis=1)
数据表合并--交集:df_outer = pd.merge(df,df1,how='outer',on=['version'],indicator=True).drop('_merge', axis=1)
设置索引列:df.set_index('id')
排序--按照某一列排序:df.sort_values(by=['age'])
排序--按照索引列排序:df.sort_index()
5.数据提取
loc函数按标签值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取
按索引提取单行的数值--- df.loc[3]
按索引提取区域行数值--- df.iloc[0:5]
提取某几列的值----- df = df.loc[:,['version', 'sn', 'app', 'endLevel', 'startLevel', 'lightLux']]
6.数据筛选
使用与、或、非三个条件配合大于、小于、等于对数据进行筛选,并进行计数和求和
df_new = df[(df['UBSD_GRADE']==1) & (df['UBSD_PHENOMENON']==2)]
df_new = df[(df['UBSD_POSITION']==4) | (df['UBSD_POSITION']==7) | (df['UBSD_POSITION']==8)]
df = df[df['BLOCKMICCNT'] > 3]
7.数据汇总:
df= df1.groupby(['version','eventid']).sum().reset_index()
8.数据输出
保存到数据库:df.to_sql(name= 't_btm20_dmd_adjust_detail', con=engine, if_exists='append', index=False)
保存到excel: df.to_csv('focus_detail.csv')
三.import numpy as np python数值计算库
两列相除:df['blockmicrate'] = np.divide(df['BLOCKMICCNT'] * 100.0, df['NOISECNT'] * 1.0)
四.pyodbc
py使用笔记-pandas函数的更多相关文章
- Python:笔记(2)——函数与模块
Python:笔记(2)——函数与模块 Python函数 关于函数 1.我们可以使用Help来查看函数的帮助信息 2.调用函数的时候,如果传入的参数数量或者类型不符合均会报错. 3.函数名其实就是一个 ...
- Matlab学习笔记 figure函数
Matlab学习笔记 figure函数 matlab中的 figure 命令,能够创建一个用来显示图形输出的一个窗口对象.每一个这样的窗口都有一些属性,例如窗口的尺寸.位置,等等.下面一一介绍它们. ...
- matlab学习笔记 bsxfun函数
matlab学习笔记 bsxfun函数 最近总是遇到 bsxfun这个函数,前几次因为无关紧要只是大概看了一下函数体去对比结果,今天再一次遇见了这个函数,想想还是有必要掌握的,遂查了些资料总结如下. ...
- matlab学习笔记13_1 函数返回值
一起来学matlab-matlab学习笔记13函数 13_1 函数返回值 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 https://blog.csdn.net/qq_36556 ...
- 第2章KNN算法笔记_函数classify0
<机器学习实战>知识点笔记目录 K-近邻算法(KNN)思想: 1,计算未知样本与所有已知样本的距离 2,按照距离递增排序,选前K个样本(K<20) 3,针对K个样本统计各个分类的出现 ...
- pandas函数应用
1.管道函数 #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/5/24 15:03 # @Author : zhang cha ...
- Py修行路 Pandas 模块基本用法
pandas 安装方法:pip3 install pandas pandas是一个强大的Python数据分析的工具包,它是基于NumPy构建的模块. pandas的主要功能: 具备对其功能的数据结构D ...
- swift学习笔记2——函数、闭包
之前学习swift时的个人笔记,根据github:the-swift-programming-language-in-chinese学习.总结,将重要的内容提取,加以理解后整理为学习笔记,方便以后查询 ...
- 阅读{django-restframework}源码[generics.py]学习笔记
首先django-restframework是基于django的一个框架. mixins.py中开头是这样写的: Basic building blocks for generic class b ...
随机推荐
- CVE-2012-0158 分析
目录 CVE-2012-0158 分析&利用 1.实验环境 2.下载poc样本 3.调试并找到漏洞触发点 4.分析漏洞触发模块及流程 5.漏洞利用 6.总结 7.参考资料 CVE-2012-0 ...
- php循环删除checkbox
一.首先要了解sql语句$SQL=delete from `user` where id in (1,2,4); 表单大概是:form action= method=post input name=I ...
- 解决 win10 由于磁盘缓慢造成机器迟钝
关闭 windows 的superfetch服务 建议禁止 superfetch服务: http://www.360quan.com/safe/6946.html 操作: http://jingyan ...
- java操作elasticsearch实现聚合查询
1.max 最大值 //max 求最大值 @Test public void test30() throws UnknownHostException{ //1.指定es集群 cluster.name ...
- 【C编程基础】make命令和makefile文件
1.关于程序的编译和链接 一般来说,无论是C.C++首先要把源文件编译成中间目标文件即 Object File(windows为.obj文件,unix为.o文件),这个动作叫做编译(compile). ...
- 为什么zookeeper集群中节点配置个数是奇数个?
Zookeeper的大部分操作都是通过选举产生的.比如,标记一个写是否成功是要在超过一半节点发送写请求成功时才认为有效.同样,Zookeeper选择领导者节点也是在超过一半节点同意时才有效.最后,Zo ...
- 关于折半法查找的一些总结以及ArrayList类的总结
一.折半法查找的总结(这算法很好理解,但我花了好久琢磨他有啥用.....) 1.实际意义 折半法查找主要是为了能够很快在一个数组中找出我们所需要的那个元素,与往常我们通过一个一个比较的方法不同,折半法 ...
- 概率期望dp
对于概率dp,我一直都弄得不是特别明白,虽然以前也有为了考试去突击过,但是终究还是掌握得不是很好,所以决定再去学习一遍,把重要的东西记录下来. 1.hdu4405 Description 在一个 \( ...
- Jenkins+Ansible+Gitlab自动化部署三剑客-Ansible本地搭建
可以通过git bash连接linux 关闭防火墙,禁用防火墙开机启动,并更爱selinux文件,重启 重新登录并检查禁用 getenforce 安装git yum -y install git ns ...
- NGINX+PHP+ZABBIX,推荐
https://www.cnblogs.com/liuzhennan/articles/5319280.html