MT【273】2014新课标压轴题之$\ln2$的估计
已知函数$f(x)=e^x-e^{-x}-2x$
(1)讨论$f(x)$的单调性;
(2)设$g(x)=f(2x)-4bf(x),$当$x>0$时,$g(x)>0,$求$b$的最大值;
(3)已知$1.4142<\sqrt{2}<1.4143$,估计$\ln 2$的近似值(精确到0.001).
分析:(1)$f^{'}(x)=e^x+e^{-x}-2\ge2\sqrt{e^x\cdot e^{-x}}-2=0$,故$f(x)$在$R$上单调递增.
(2)$g(x)=e^{2x}-e^{-2x}-4x-4b(e^x-e^{-x}-2x),$
$g^{'}(x)=2e^{2x}+2e^{-2x}-4-4b(e^x+e^{-x}-2)=2(e^x+e^{-x}-2)(e^x+e^{-x}+2-2b)$,
设$h(x)=e^x+e^{-x}+2-2b,h(0)=4-2b$
当$b\le 2$时,易知$h(x)\ge h(0)=0,$故$g(x)$在$(0,+\infty)$上单调递增,由$g(0)=0$知,$g(x)>0$,满足题意.
当$b>2$时,存在零点$\phi$,使得$h(\phi)=0,\phi=\ln(b-1+\sqrt{b^2-2b})$,故$g(x)$在$(0,\phi)$单调递减,又$g(0)=0,$故$g(x)<0$,不符合题意.
综上,$b$的最大值为2.
(3)首先应该要知道$\ln 2$的大概值为0.693(平时的积累,类似要知道$\pi\approx3.1415926$.)这里选择的函数应该是带有$b$的$g(x)$ 而不是$f(x)$, 其次要估计$\ln 2$ 又要用到$\sqrt{2}$, 由$g(x)$ 的函数形式,$x$ 的取值很容易尝试$ln\sqrt{2},g(\ln\sqrt{2})=(4b-2)\ln2+\dfrac{3}{2}-2\sqrt{2}b$, 当$b\in(\dfrac{1}{2},2]$ 时 由$g(\ln\sqrt{2})>0$ 得$\ln 2>\dfrac{2\sqrt{2}b-\dfrac{3}{2}}{4b-2}\ge\dfrac{8\sqrt{2}-3}{12}>0.6928$
上界尝试在当$b>2$时估计.令$\phi=\ln2$,此时$b=\dfrac{3\sqrt{2}}{4}+1$,由(2)知$g(\ln\sqrt{2})<g(0)=0,$ 得
$\ln 2<\dfrac{2\sqrt{2}b-\dfrac{3}{2}}{4b-2}=\dfrac{18+\sqrt{2}}{28}<0.6934.$
故$\ln2\approx 0.693$
练习:
附解答:
注:泰勒展开$\ln(1+x)=x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\cdots+(-1)^{n-1}\dfrac{x^n}{n}+o(x^n)$
故$ln(\dfrac{1+x}{1-x})=2(x+\dfrac{x^3}{3}+\cdots)$取$x=\dfrac{1}{3}$则$ln(2)\approx 0.693$
MT【273】2014新课标压轴题之$\ln2$的估计的更多相关文章
- MT【259】2016天津压轴题之最佳逼近
(2016天津压轴题)设函数$f(x)=(x-1)^3-ax-b,x\in R$, 其中$a,b\in R$(1)求$f(x)$的单调区间.(2)若$f(x)$存在极值点$x_0$,且$f(x_1)= ...
- 2019年全国新课标I卷文理科数学LaTeX排版试题与解析
整体分析,没有偏怪难题之分,中等题偏多,题目较往年有题型改动变化,但难度还称不上很难.具体内容贴上链接! https://mp.weixin.qq.com/s/WKXhCKI_-z3UT-zUwI23 ...
- MT【256】2016四川高考解答压轴题
(2016四川高考数学解答压轴题)设函数$f(x)=ax^2-a-\ln x,a\in R$. 1)讨论$f(x)$的单调性;2)确定$a$的所有可能值,使得$f(x)>\dfrac{1}{x} ...
- SQL Server 2014 新特性——内存数据库
SQL Server 2014 新特性——内存数据库 目录 SQL Server 2014 新特性——内存数据库 简介: 设计目的和原因: 专业名词 In-Memory OLTP不同之处 内存优化表 ...
- 谈谈我的微软特约稿:《SQL Server 2014 新特性:IO资源调控》
一.本文所涉及的内容(Contents) 本文所涉及的内容(Contents) 背景(Contexts) 撰写经历(Experience) 特约稿正文(Content-body) 第一部分:生活中资源 ...
- SQL Server 2014新特性探秘(3)-可更新列存储聚集索引
简介 列存储索引其实在在SQL Server 2012中就已经存在,但SQL Server 2012中只允许建立非聚集列索引,这意味着列索引是在原有的行存储索引之上的引用了底层的数据,因此会 ...
- SQL Server 2014新功能PPT
本篇文章是我在公司内部分享SQL Server 2014新功能的PPT,在本PPT中我详细描述了SQL Server除了BI方面的新功能,以及提供了大量的测试.希望对大家有帮助. 请点 ...
- 小心SQL SERVER 2014新特性——基数评估引起一些性能问题
在前阵子写的一篇博文"SQL SERVER 2014 下IF EXITS 居然引起执行计划变更的案例分享"里介绍了数据库从SQL SERVER 2005升级到 SQL SERVER ...
- SQL Server 2014新特性——Buffer Pool扩展
Buffer Pool扩展 Buffer Pool扩展是buffer pool 和非易失的SSD硬盘做连接.以SSD硬盘的特点来提高随机读性能. 缓冲池扩展优点 SQL Server读以随机读为主,S ...
随机推荐
- 007-迅雷定时重启AutoHotkey脚本-20190411
;; 定时重启迅雷.ahk,;;~ 2019年04月11日;#SingleInstance,forceSetWorkingDir,%A_ScriptDir%DetectHiddenWindows,On ...
- 1060E Sergey and Subway(思维题,dfs)
题意:给出一颗树,现在,给哪些距离为2的点对,加上一条边,问所有点对的距离和 题解:如果没有加入新的边,距离和就会等于每条边的贡献,由于是树,我们用点来代表点上面的边,对于每条边,它的贡献将是(子树大 ...
- Divide by three, multiply by two CodeForces - 977D (思维排序)
Polycarp likes to play with numbers. He takes some integer number xx, writes it down on the board, a ...
- 在k-means或kNN,我们是用欧氏距离来计算最近的邻居之间的距离。为什么不用曼哈顿距离?
曼哈顿距离只计算水平或垂直距离,有维度的限制.另一方面,欧氏距离可用于任何空间的距离计算问题. 因为,数据点可以存在于任何空间,欧氏距离是更可行的选择.例如:想象一下国际象棋棋盘,象或车所 做的移动是 ...
- PAT L2-007 家庭房产
https://pintia.cn/problem-sets/994805046380707840/problems/994805068539215872 给定每个人的家庭成员和其自己名下的房产,请你 ...
- PHP的优化建议(仅借鉴)
转载: https://www.awaimai.com/1050.html 1 字符串 1.1 少用正则表达式 能用PHP内部字符串操作函数的情况下,尽量用他们,不要用正则表达式, 因为其效率高于正则 ...
- http1.0 1.1 与2.0
长连接 HTTP 1.0需要使用keep-alive参数来告知服务器端要建立一个长连接,而HTTP1.1默认支持长连接. HTTP是基于TCP/IP协议的,创建一个TCP连接是需要经过三次握手的,有一 ...
- 120. 单词接龙 (BFS)
描述 给出两个单词(start和end)和一个字典,找到从start到end的最短转换序列 比如: 每次只能改变一个字母. 变换过程中的中间单词必须在字典中出现. 如果没有转换序列则返回0. 所有单词 ...
- 运行Spark-shell,解决Unable to load native-hadoop library for your platform
启动spark后,运行bin/spark-shell会出现一个警告 提君博客原创 WARN util.NativeCodeLoader: Unable to load native-hadoop li ...
- 工作效率提升之Eclipse篇(1):干掉烦人的xml文件的validation
每次启动maven项目,都会有一堆烦人的xml文件的validation,一旦网络较慢,项目重新启动的时候,这些多余的验证纯属浪费时间. Eclipse上取消validation的方法: 1.菜单[W ...