我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

分析:斐波那契数列的变形

n=0,返回0

n=1,返回1

n=2,返回1

n>2,两种情况第一块横着放,返回f(n-1),竖着放返回f(n-2)

所以就是一个典型斐波那契数列

剑指offer——矩形覆盖的更多相关文章

  1. 剑指Offer 矩形覆盖

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?   解法,还是斐波那契数列   AC代码: class So ...

  2. 用js刷剑指offer(矩形覆盖)

    题目描述 我们可以用21的小矩形横着或者竖着去覆盖更大的矩形.请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 牛客网链接 思路 依旧是斐波那契数列 2 * n的大矩形,和n个 ...

  3. 剑指offer——矩阵覆盖(斐波那契变形)

    ****感觉都可以针对斐波那契写一个变形题目的集合了****** 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? cl ...

  4. 剑指offer--20.矩形覆盖

    链接:https://www.nowcoder.com/questionTerminal/72a5a919508a4251859fb2cfb987a0e6来源:牛客网 @DanielLea 思路分析: ...

  5. 剑指Offer-10.矩形覆盖(C++/Java)

    题目: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 分析: 实际上还是一道斐波那契数列的应用,要填2*n的大矩形, ...

  6. C#版 - 剑指offer 面试题9:斐波那契数列及其变形(跳台阶、矩形覆盖) 题解

    面试题9:斐波那契数列及其变形(跳台阶.矩形覆盖) 提交网址: http://www.nowcoder.com/practice/c6c7742f5ba7442aada113136ddea0c3?tp ...

  7. 剑指Offer - 九度1390 - 矩形覆盖

    剑指Offer - 九度1390 - 矩形覆盖2014-02-05 23:27 题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形 ...

  8. 剑指Offer:矩形覆盖【N1】

    剑指Offer:矩形覆盖[N1] 题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目思考 我们先把2*8的 ...

  9. 7、斐波那契数列、跳台阶、变态跳台阶、矩形覆盖------------>剑指offer系列

    题目:斐波那契数列 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). f(n) = f(n-1) + f(n-2) 基本思路 这道题在剑指offe ...

随机推荐

  1. Vue2+VueRouter2+webpack 构建项目实战(一):准备工作

    环境准备 首先,要开始工作之前,还是需要把环境搭建好.需要的环境是nodejs+npm,当然现在安装node都自带了npm. 在终端下面输入命令node -v会有版本号出来.就说明安装成功了.输入np ...

  2. [总结]高效的jQuery代码编写技巧

    缓存变量 DOM遍历是昂贵的,所以尽量将会重用的元素缓存. // 糟糕 h = $('#element').height(); $('#element').css('height',h-20); // ...

  3. loj#2483. 「CEOI2017」Building Bridges(dp cdq 凸包)

    题意 题目链接 Sol \[f[i], f[j] + (h[i] - h[j])^2 + (w[i - 1] - w[j]))\] 然后直接套路斜率优化,发现\(k, x\)都不单调 写个cdq就过了 ...

  4. 洛谷P4577 [FJOI2018]领导集团问题(dp 线段树合并)

    题意 题目链接 Sol 首先不难想到一个dp,设\(f[i][j]\)表示\(i\)的子树内选择的最小值至少为\(j\)的最大个数 转移的时候维护一个后缀\(mx\)然后直接加 因为后缀max是单调不 ...

  5. django rest framework 项目创建

    Django Rest Framework 是一个强大且灵活的工具包,用以构建Web API 为什么要使用Rest Framework Django REST Framework可以在Django的基 ...

  6. 使用git将Android源码上传到github

    下面举Android的Browser源码通过git保存到github上 首先在github.com官网new repository一个仓库 在Repository name哪里填入Browser然后创 ...

  7. mysql之事务管理

    本文内容: 什么是事务管理 事务管理操作 回滚点 默认的事务管理 首发日期:2018-04-18 什么是事务管理: 可以把一系列要执行的操作称为事务,而事务管理就是管理这些操作要么完全执行,要么完全不 ...

  8. MySQL 授予普通用户PROCESS权限

    在MySQL中如何给普通用户授予查看所有用户线程/连接的权限,当然,默认情况下show processlist是可以查看当前用户的线程/连接的. mysql> grant process on ...

  9. 简化OSI七层网络协议

    OSI层 功能 TCP/IP协议 设备 应用层 文件传输,电子邮件,文件服务,虚拟终端 TFTP,HTTP,SNMP,FTP,SMTP,DNS,Telnet 表示层 数据格式化,代码转换,数据解密 会 ...

  10. .net core系列之《.net core内置IOC容器ServiceCollection》

    一.IOC介绍 IOC:全名(Inversion of Control)-控制反转 IOC意味着我们将对象的创建控制权交给了外部容器,我们不管它是如何创建的,我们只需要知道,当我们想要某个实例时,我们 ...