剑指offer——矩形覆盖
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
分析:斐波那契数列的变形
n=0,返回0
n=1,返回1
n=2,返回1
n>2,两种情况第一块横着放,返回f(n-1),竖着放返回f(n-2)
所以就是一个典型斐波那契数列
剑指offer——矩形覆盖的更多相关文章
- 剑指Offer 矩形覆盖
题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 解法,还是斐波那契数列 AC代码: class So ...
- 用js刷剑指offer(矩形覆盖)
题目描述 我们可以用21的小矩形横着或者竖着去覆盖更大的矩形.请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 牛客网链接 思路 依旧是斐波那契数列 2 * n的大矩形,和n个 ...
- 剑指offer——矩阵覆盖(斐波那契变形)
****感觉都可以针对斐波那契写一个变形题目的集合了****** 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? cl ...
- 剑指offer--20.矩形覆盖
链接:https://www.nowcoder.com/questionTerminal/72a5a919508a4251859fb2cfb987a0e6来源:牛客网 @DanielLea 思路分析: ...
- 剑指Offer-10.矩形覆盖(C++/Java)
题目: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 分析: 实际上还是一道斐波那契数列的应用,要填2*n的大矩形, ...
- C#版 - 剑指offer 面试题9:斐波那契数列及其变形(跳台阶、矩形覆盖) 题解
面试题9:斐波那契数列及其变形(跳台阶.矩形覆盖) 提交网址: http://www.nowcoder.com/practice/c6c7742f5ba7442aada113136ddea0c3?tp ...
- 剑指Offer - 九度1390 - 矩形覆盖
剑指Offer - 九度1390 - 矩形覆盖2014-02-05 23:27 题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形 ...
- 剑指Offer:矩形覆盖【N1】
剑指Offer:矩形覆盖[N1] 题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目思考 我们先把2*8的 ...
- 7、斐波那契数列、跳台阶、变态跳台阶、矩形覆盖------------>剑指offer系列
题目:斐波那契数列 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). f(n) = f(n-1) + f(n-2) 基本思路 这道题在剑指offe ...
随机推荐
- Vue2+VueRouter2+webpack 构建项目实战(一):准备工作
环境准备 首先,要开始工作之前,还是需要把环境搭建好.需要的环境是nodejs+npm,当然现在安装node都自带了npm. 在终端下面输入命令node -v会有版本号出来.就说明安装成功了.输入np ...
- [总结]高效的jQuery代码编写技巧
缓存变量 DOM遍历是昂贵的,所以尽量将会重用的元素缓存. // 糟糕 h = $('#element').height(); $('#element').css('height',h-20); // ...
- loj#2483. 「CEOI2017」Building Bridges(dp cdq 凸包)
题意 题目链接 Sol \[f[i], f[j] + (h[i] - h[j])^2 + (w[i - 1] - w[j]))\] 然后直接套路斜率优化,发现\(k, x\)都不单调 写个cdq就过了 ...
- 洛谷P4577 [FJOI2018]领导集团问题(dp 线段树合并)
题意 题目链接 Sol 首先不难想到一个dp,设\(f[i][j]\)表示\(i\)的子树内选择的最小值至少为\(j\)的最大个数 转移的时候维护一个后缀\(mx\)然后直接加 因为后缀max是单调不 ...
- django rest framework 项目创建
Django Rest Framework 是一个强大且灵活的工具包,用以构建Web API 为什么要使用Rest Framework Django REST Framework可以在Django的基 ...
- 使用git将Android源码上传到github
下面举Android的Browser源码通过git保存到github上 首先在github.com官网new repository一个仓库 在Repository name哪里填入Browser然后创 ...
- mysql之事务管理
本文内容: 什么是事务管理 事务管理操作 回滚点 默认的事务管理 首发日期:2018-04-18 什么是事务管理: 可以把一系列要执行的操作称为事务,而事务管理就是管理这些操作要么完全执行,要么完全不 ...
- MySQL 授予普通用户PROCESS权限
在MySQL中如何给普通用户授予查看所有用户线程/连接的权限,当然,默认情况下show processlist是可以查看当前用户的线程/连接的. mysql> grant process on ...
- 简化OSI七层网络协议
OSI层 功能 TCP/IP协议 设备 应用层 文件传输,电子邮件,文件服务,虚拟终端 TFTP,HTTP,SNMP,FTP,SMTP,DNS,Telnet 表示层 数据格式化,代码转换,数据解密 会 ...
- .net core系列之《.net core内置IOC容器ServiceCollection》
一.IOC介绍 IOC:全名(Inversion of Control)-控制反转 IOC意味着我们将对象的创建控制权交给了外部容器,我们不管它是如何创建的,我们只需要知道,当我们想要某个实例时,我们 ...