CF650C Table Compression
给一个 \(n\times m\) 的非负整数矩阵 \(a\),让你求一个 \(n\times m\) 的非负整数矩阵 \(b\),满足以下条件
- 若 \(a_{i,j}<a_{i,k}\),则 \(b_{i,j}<b_{i,k}\)
- 若 \(a_{i,j}=a_{i,k}\),则 \(b_{i,j}=b_{i,k}\)
- 若 \(a_{i,j}<a_{k,j}\),则 \(b_{i,j}<b_{k,j}\)
- 若 \(a_{i,j}=a_{k,j}\),则 \(b_{i,j}=b_{k,j}\)
- \(b\) 中的最大值最小
\(n\times m\leq 10^6\)
建图+并查集
先考虑 \(a\) 中没有重复元素的情况
发现,我们只需要对于每行每列,按值域从小到大,相邻两位置连边,然后 \(b\) 每个位置的权值即为到最小数的距离,在 DAG 上遍历一遍即可
但是若 \(a\) 中有重复元素,直接建图就没有正确性了
\(trick\) :对于同一行同一列的重复元素,建立并查集,进行操作时只用对根节点进行操作
时间复杂度 \(O(nm\log nm)\)
代码
#include <bits/stdc++.h>
using namespace std;
#define get(x, y) ((x - 1) * m + y)
typedef pair <int, int> pii;
const int maxn = 1e6 + 10;
int n, m, tot, a[maxn], f[maxn], par[maxn];
struct node {
int x, y;
bool operator < (const node& o) const {
return a[get(x, y)] < a[get(o.x, o.y)];
}
} dat[maxn];
vector <int> g[maxn];
int find(int x) {
return par[x] == x ? x : par[x] = find(par[x]);
}
void unite(int x, int y) {
par[find(x)] = find(y);
}
int dfs(int u) {
if (~f[u]) return f[u]; f[u] = 0;
for (int v : g[u]) f[u] = max(f[u], dfs(v));
return ++f[u];
}
int main() {
scanf("%d %d", &n, &m), tot = n * m;
for (int i = 1; i <= tot; i++) {
scanf("%d", a + i), par[i] = i;
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
dat[j] = node{i, j};
}
sort(dat + 1, dat + m + 1);
for (int j = 1; j < m; j++) {
int u = get(dat[j].x, dat[j].y);
int v = get(dat[j + 1].x, dat[j + 1].y);
if (a[u] == a[v]) unite(u, v);
}
}
for (int j = 1; j <= m; j++) {
for (int i = 1; i <= n; i++) {
dat[i] = node{i, j};
}
sort(dat + 1, dat + n + 1);
for (int i = 1; i < n; i++) {
int u = get(dat[i].x, dat[i].y);
int v = get(dat[i + 1].x, dat[i + 1].y);
if (a[u] == a[v]) unite(u, v);
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
dat[j] = node{i, j};
}
sort(dat + 1, dat + m + 1);
for (int j = 1; j < m; j++) {
int u = get(dat[j].x, dat[j].y);
int v = get(dat[j + 1].x, dat[j + 1].y);
if ((u = find(u)) != (v = find(v))) g[v].push_back(u);
}
}
for (int j = 1; j <= m; j++) {
for (int i = 1; i <= n; i++) {
dat[i] = node{i, j};
}
sort(dat + 1, dat + n + 1);
for (int i = 1; i < n; i++) {
int u = get(dat[i].x, dat[i].y);
int v = get(dat[i + 1].x, dat[i + 1].y);
if ((u = find(u)) != (v = find(v))) g[v].push_back(u);
}
}
memset(f, -1, sizeof f);
for (int i = 1; i <= tot; i++) {
if (find(i) == i) dfs(i);
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
printf("%d ", f[find(get(i, j))]);
}
putchar(10);
}
return 0;
}
一种 \(shortest\) 的做法
对于每个元素,按值域从小到大考虑,通过已访问到的行列最大值更新答案
时间复杂度 \(O(nm\log nm)\)
代码
#include <bits/stdc++.h>
using namespace std;
#define get(x, y) ((x - 1) * m + y)
const int maxn = 1e6 + 10;
int n, m, tot, a[maxn], ans[maxn], par[maxn], val[2][maxn];
struct node {
int x, y;
bool operator < (const node& o) const {
return a[get(x, y)] < a[get(o.x, o.y)];
}
} dat[maxn];
int find(int x) {
return par[x] == x ? x : par[x] = find(par[x]);
}
int main() {
scanf("%d %d", &n, &m), tot = n * m;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
int pos = get(i, j);
scanf("%d", a + pos), dat[pos] = node{i, j}, par[pos] = pos;
}
}
sort(dat + 1, dat + tot + 1);
for (int i = 1; i <= tot; i++) {
int tx = dat[i].x, ty = dat[i].y, pos = get(tx, ty);
int px = find(val[0][tx]), py = find(val[1][ty]), p = find(pos);
ans[p] = max(ans[px] + (a[p] > a[px]), ans[py] + (a[p] > a[py]));
if (a[p] == a[px]) par[px] = p;
if (a[p] == a[py]) par[py] = p;
val[0][tx] = val[1][ty] = p;
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
printf("%d ", ans[find(get(i, j))]);
}
putchar(10);
}
return 0;
}
CF650C Table Compression的更多相关文章
- codeforces Codeforces Round #345 (Div. 1) C. Table Compression 排序+并查集
C. Table Compression Little Petya is now fond of data compression algorithms. He has already studied ...
- Codeforces Round #345 (Div. 1) C. Table Compression dp+并查集
题目链接: http://codeforces.com/problemset/problem/650/C C. Table Compression time limit per test4 secon ...
- Code Forces 650 C Table Compression(并查集)
C. Table Compression time limit per test4 seconds memory limit per test256 megabytes inputstandard i ...
- Codeforces Round #345 (Div. 2) E. Table Compression 并查集
E. Table Compression 题目连接: http://www.codeforces.com/contest/651/problem/E Description Little Petya ...
- Oracle Schema Objects——Tables——Table Compression
Oracle Schema Objects Table Compression 表压缩 The database can use table compression to reduce the amo ...
- codeforces 651E E. Table Compression(贪心+并查集)
题目链接: E. Table Compression time limit per test 4 seconds memory limit per test 256 megabytes input s ...
- MySQL 5.6 Reference Manual-14.7 InnoDB Table Compression
14.7 InnoDB Table Compression 14.7.1 Overview of Table Compression 14.7.2 Enabling Compression for a ...
- Codeforces Round #345 (Div. 2) E. Table Compression 并查集+智商题
E. Table Compression time limit per test 4 seconds memory limit per test 256 megabytes input standar ...
- Codeforces 650C Table Compression
传送门 time limit per test 4 seconds memory limit per test 256 megabytes input standard input output st ...
随机推荐
- 洛谷P4561 [JXOI2018]排序问题(二分 期望)
题意 题目链接 Sol 首先一种方案的期望等于它一次排好的概率的倒数. 一次排好的概率是个数数题,他等于一次排好的方案除以总方案,也就是\(\frac{\prod cnt_{a_i}!}{(n+m)! ...
- div中img依据不同分辨率居中显示,超出部分隐藏
在做banner居中时 碰到的问题,知道可以用背景图实现居中显示,但是内心是想深究下的,故找到几种办法收集一下,后面两种真的是奇技淫巧 来着下面两处 https://www.zhihu.com/que ...
- Salesforce 应用生命周期管理
应用程序生命周期管理 一个Salesforce系统可以有多个版本,最常见的有: production版本:终端用户实际使用的版本 sandbox版本:沙盒环境,用于开发.测试等 在对Salesforc ...
- Git 常用命令及操作总结
Git常用命令及操作总结 By:授客 QQ:1033553122 利用TortoiseGit克隆源码库到本地 1.安装TortoiseGit 2.打开Git,进入到源码库,点击图示红色选框框选按钮,弹 ...
- Windows服务System权限下在当前用户桌面创建快捷方式C#实例程序
Windows服务一般运行在System权限下,这样权限比较高,方便执行一些高权限的操作. 但是,Environment.GetFolderPath等函数获取的也是System用户下的,而不是当前用户 ...
- 深圳共创力“研发管理&知识管理”高端研讨交流会在深圳举办!
2017/4/8,由深圳市共创力企业管理咨询公司举办的“研发管理&知识管理”高端研讨会在深圳市南山区圣淘沙国际酒店(翡翠店)隆重召开.此次研讨会由共创力总经理.首席顾问杨学明先生主持.研讨会先 ...
- html常用标签学习笔记
本文内容: 前言:本文讲述的内容包括几类常用标签,以及这些标签的一些常用属性(有一些属性由于已经有CSS样式来代替,所以对于一些不重要的这里选择不讲) 排版标签 段落标签:p div span 标题标 ...
- UE4照片级渲染Demo
- 餐饮ERP相关问题FAQ
1.订单无法自动上传,手动上传也是失败. 检查网络是否有问题,网络如果正常,打开本地连接-属性-internet协议版本4-首选DNS服务器设置为(114.114.114.114) 然后再打开IE浏览 ...
- 持续代码质量管理-SonarQube-7.3部署
Sonar 是一个用于代码质量管理的开放平台.通过插件机制,Sonar 可以集成不同的测试工具,代码分析工具,以及持续集成工具.与持续集成工具(例如 Hudson/Jenkins 等)不同,Sonar ...