[CF888E] Maximum Subsequence 序列分治
早期作品,不喜轻喷。
LG传送门
序列分治板子题。
切这道题用了好长时间,所以想发篇题解作为纪念 。
首先,我们认真观察题目数据(面向数据做题是个好习惯),发现题目的\(n\)竟然只有\(35\),我们顿时感到打暴力的机会来了:
\(2^n\)枚举?
是个好办法。
只可惜我们发现\(2^{35}=34359738368\),并不能过掉所有数据点,于是考虑优化。
分治
考虑把这\(n\)个数分成两组(当然要尽量平均),对两组数据分别实施暴力,并把结果存起来(事实上是可以存下来的:\(2^{18}=262144\))。
void dfs1(int i,int sum){
if(i==b){p[++k]=sum,p[++k]=(sum+a[b])%m; return ;}
dfs1(i+1,sum),dfs1(i+1,(sum+a[i])%m);
}
void dfs2(int i,int sum){
if(i==n){q[++t]=sum,q[++t]=(sum+a[n])%m; return ;}
dfs2(i+1,sum),dfs2(i+1,(sum+a[i])%m);
}
这样一来,我们就得到了原序列分成两半的结果,这两个序列中的数两两组合就可以得到我们要的结果。
等等,两两组合?这样的复杂度不是和纯暴力一样吗?
这时候就需要我们贪心地看问题了:
我们发现:对于序列\(p\)中的每一个数\(p_i\),在序列\(q\)中若能找到一个与之相加小于\(m\)的最大的数\(q_j\),其他所有的与\(p_i\)的和小于\(m\)的数都不会比它更优,即\(q_j\)比序列\(q\)中所有比它小的数都更优。
对于\(q\)中的每一个数,满足相同条件的\(p_i\)也具有同样的性质。
我们想到一种对于\(p,q\)线性的算法:把\(p\)和\(q\)排一遍序,把指向\(p\)数组的指针\(i\)和指向\(q\)数组的指针\(j\)分别按上面所说的条件向右和向左移动,同时更新\(ans\)。
这时我们就只剩下\(p_i+q_j>m\)的情况了,由于在之前已经取过模,\(p_i+q_j\)必定小于\(2m\),所以我们就只需要用\(p,q\)的最大值之和去更新一下\(ans\)就好了。
代码实现
int main(){
R int i,j,ans=0;
n=read(),m=read(),b=n>>1;
for(i=1;i<=n;++i) a[i]=read();
if(n==1) printf("%d",a[1]%m),exit(0);
dfs1(1,0),dfs2(b+1,0),i=0,j=t;
sort(p+1,p+k+1),sort(q+1,q+t+1);
while(i<=k){
while(p[i]+q[j]>=m) --j;
ans=max(ans,p[i]+q[j]),++i;
}
ans=max(ans,p[k]+q[t]-m);
printf("%d",ans);
return 0;
}
注意这里特判了一下\(n=1\)的情况,我被这个点坑了一次。
[CF888E] Maximum Subsequence 序列分治的更多相关文章
- CF888E Maximum Subsequence (Meet in the middle,贪心)
题目链接 Solution Meet in the middle. 考虑到 \(2^{35}\) 枚举会超时,于是分成两半枚举(尽量平均). 然后不能 \(n^2\) 去匹配,需要用到一点贪心: 将数 ...
- CF888E Maximum Subsequence(meet in the middle)
给一个数列和m,在数列任选若干个数,使得他们的和对m取模后最大( \(1<=n<=35\) , \(1<=m<=10^{9}\)) 考虑把数列分成两份,两边分别暴力求出所有的可 ...
- $CF888E\ Maximum\ Subsequence$ 搜索
正解:$meet\ in\ the\ middle$ 解题报告: 传送门$QwQ$. 发现数据范围为$n\leq 35$,所以$2^{\frac{n}{2}}$是可做的. 所以先拆成$A,B$两个集合 ...
- 【CF888E】Maximum Subsequence 折半搜索
[CF888E]Maximum Subsequence 题意:给你一个序列{ai},让你从中选出一个子序列,使得序列和%m最大. n<=35,m<=10^9 题解:不小心瞟了一眼tag就一 ...
- 【CF888E】Maximum Subsequence(meet in the middle)
[CF888E]Maximum Subsequence(meet in the middle) 题面 CF 洛谷 题解 把所有数分一下,然后\(meet\ in\ the\ middle\)做就好了. ...
- 1007. Maximum Subsequence Sum (25)
Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, ...
- PAT - 测试 01-复杂度2 Maximum Subsequence Sum (25分)
1, N2N_2N2, ..., NKN_KNK }. A continuous subsequence is defined to be { NiN_iNi, Ni+1N_{i ...
- PAT 解题报告 1007. Maximum Subsequence Sum (25)
Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, ...
- 中国大学MOOC-陈越、何钦铭-数据结构-2015秋 01-复杂度2 Maximum Subsequence Sum (25分)
01-复杂度2 Maximum Subsequence Sum (25分) Given a sequence of K integers { N1,N2, ..., NK }. ...
随机推荐
- BZOJ1177:[APIO2009]Oil(枚举,前缀和)
Description 采油区域 Siruseri政府决定将石油资源丰富的Navalur省的土地拍卖给私人承包商以建立油井.被拍卖的整块土地为一个矩形区域,被划分为M×N个小块. Siruseri地质 ...
- Python 模块化 from .. import 语句资源搜索顺序 (三)
接着上一篇文章最后的import子句资源搜索顺序,我们来写几个例子了解下. 例一. #test1.py x = 123 #test.py import test1 print(dir()) print ...
- nRF5 SDK for Mesh(三) Installing the mesh toolchain 安装编译工具链
Installing the mesh toolchain To build the example applications, a toolchain based on either CMake o ...
- php版本低更换php版本-问题以解决
Parse error: syntax error, unexpected 'class' (T_CLASS), expecting identifier (T_STRING) or variable ...
- SpringMVC转发页面405错误
需要在该方法前加上:@ResponseBody注解 加上这个注解后可能在转发页面的时候出现问题,则需要在方法的参数中增加HttpServletRequest 和HttpServletResponse参 ...
- Linux-- su和sudo 切换用户
su 切换用户 用法:su [选项] [-] [用户 [参数]... ] - :以 login-shell 方式进行登录 不加 - :以 no-login-shell 方式进行登录 -c:只进行一次在 ...
- Web | JavaScript的提升机制
作用对象: 函数和变量的声明. 作用效果: 会将其声明提升到其所在的作用域的最顶端.函数会优先于变量的声明. //函数的提升优于变量的提升 test(); var a=2; function test ...
- volatile、static
谈到 volatile.static 就必须说多线程. 1.一个线程在开始执行的时候,会开启一片自己的工作内存(自己线程私有),同时将主内存中的数据复制到自己 的工作内存,从此读写数据都是自己的工作内 ...
- 【2017 ICPC亚洲区域赛北京站 J】Pangu and Stones(区间dp)
In Chinese mythology, Pangu is the first living being and the creator of the sky and the earth. He w ...
- C++笔记016:const 基础
原创笔记,转载请注明出处! 点击[关注],关注也是一种美德~ 笔记十六关于const关键字,在C语言和C++中const的表现是不同的. 先看一下const基础知识. 对const的初级理解:cons ...