学习TensorFlow笔记

import tensorflow as tf

#定义变量
#Variable 定义张量及shape
w1= tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2= tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))
with tf.Session() as sess:
print(sess.run(w1.initializer))
print(sess.run(w2.initializer))
#None
#None #打印张量,查看数据shape等信息
print(w1)
print(w2)
#<tf.Variable 'Variable:0' shape=(2, 3) dtype=float32_ref>
#<tf.Variable 'Variable_1:0' shape=(3, 1) dtype=float32_ref> #tf.constan是一个计算,结果为一个张量,保存在变量x中
x = tf.constant([[0.7, 0.9]])
print(x)
#Tensor("Const:0", shape=(1, 2), dtype=float32)
with tf.Session() as sess:
print(sess.run(x))
#[[ 0.69999999 0.89999998]] #定义前向传播的神经网络
#matmul做矩阵乘法
a = tf.matmul(x, w1) # x shape=(1, 2) w1 shape=(2, 3) print(a)
#Tensor("MatMul:0", shape=(1, 3), dtype=float32) y = tf.matmul(a, w2) #a shape=(1, 3) w2 shape=(3, 1)
print(y)
#Tensor("MatMul_1:0", shape=(1, 1), dtype=float32) #调用会话输出结果
with tf.Session() as sess:
sess.run(w1.initializer)
sess.run(w2.initializer)
print(sess.run(a))
#[[-2.76635647 1.12854266 0.57783246]]
print(sess.run(y))
#[[ 3.95757794]] #placeholder
x=tf.placeholder(tf.float32,shape=(1,2),name="input")
a=tf.matmul(x,w1)
y=tf.matmul(a,w2)
sess=tf.Session()
init_op=tf.global_variables_initializer()
sess.run(init_op) print(sess.run(y,feed_dict={x:[[0.8,0.9]]}))
#[[ 4.2442317]]
x = tf.placeholder(tf.float32, shape=(3, 2), name="input")
a = tf.matmul(x, w1)
y = tf.matmul(a, w2) sess = tf.Session()
#使用tf.global_variables_initializer()来初始化所有的变量
init_op = tf.global_variables_initializer()
sess.run(init_op) print(sess.run(y, feed_dict={x: [[0.7,0.9],[0.1,0.4],[0.5,0.8]]})) '''
[[ 3.95757794]
[ 1.15376544]
[ 3.16749239]]
'''

  整体神经网络的实现

import tensorflow as tf
from numpy.random import RandomState
#定义神经网络的参数,输入和输出节点
batch_size=8
#均值为0 方差为1 随机分布满足正态分布 shape为2*3
w1=tf.Variable(tf.random_normal([2,3],stddev=1,seed=1))
w2=tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))
#shape 根据数据自动计算 batchsize个
x=tf.placeholder(tf.float32,shape=(None,2))
y_=tf.placeholder(tf.float32,shape=(None,1)) #定义前向传播过程,损失函数及反向传播算法 a=tf.matmul(x,w1)
y=tf.matmul(a,w2)
#损失函数 使用交叉熵
#优化方法使用AdamOptimizer
cross_entropy=-tf.reduce_mean(y_*tf.log(tf.clip_by_value(y,1e-10,1.0)))
train_step=tf.train.AdamOptimizer(learning_rate=0.001).minimize(cross_entropy) rdm=RandomState(1)
#随机生成128个数据 shape 128*2
X=rdm.rand(128,2) #Y的值是模拟的 ,实际假设x2+x1如果大于1则标签Y为1 否则标签Y为0
Y=[[int(x1+x2<1)] for (x1,x2) in X] #创建一个会话 ,运算计算图
#全局初始化变量
STEPS = 5000
with tf.Session() as sess:
init_op=tf.global_variables_initializer()
sess.run(init_op)
# 输出目前(未经训练)的参数取值。
print("w1:", sess.run(w1))
print("w2:", sess.run(w2))
print("\n")
for i in range(STEPS):
start = (i * batch_size) % 128
end = (i * batch_size) % 128 + batch_size
sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]})
if i % 1000 == 0:
total_cross_entropy = sess.run(cross_entropy, feed_dict={x: X, y_: Y})
print("After %d training step(s), cross entropy on all data is %g" % (i, total_cross_entropy))
# 输出训练后的参数取值。
print("\n")
print("w1:", sess.run(w1))
print("w2:", sess.run(w2)) ''' w1: [[-0.81131822 1.48459876 0.06532937]
[-2.4427042 0.0992484 0.59122431]]
w2: [[-0.81131822]
[ 1.48459876]
[ 0.06532937]] After 0 training step(s), cross entropy on all data is 0.0674925
After 1000 training step(s), cross entropy on all data is 0.0163385
After 2000 training step(s), cross entropy on all data is 0.00907547
After 3000 training step(s), cross entropy on all data is 0.00714436
After 4000 training step(s), cross entropy on all data is 0.00578471 w1: [[-1.96182752 2.58235407 1.68203771]
[-3.46817183 1.06982315 2.11788988]]
w2: [[-1.82471502]
[ 2.68546653]
[ 1.41819501]] Process finished with exit code 0
'''

  

简单神经网络TensorFlow实现的更多相关文章

  1. day-19 多种优化模型下的简单神经网络tensorflow示例

    如下样例基于tensorflow实现了一个简单的3层深度学习入门框架程序,程序主要有如下特性: 1.  基于著名的MNIST手写数字集样例数据:http://yann.lecun.com/exdb/m ...

  2. ubuntu之路——day12.1 不用tf和torch 只用python的numpy在较为底层的阶段实现简单神经网络

    首先感谢这位博主整理的Andrew Ng的deeplearning.ai的相关作业:https://blog.csdn.net/u013733326/article/details/79827273 ...

  3. Windows下编译TensorFlow1.3 C++ library及创建一个简单的TensorFlow C++程序

    由于最近比较忙,一直到假期才有空,因此将自己学到的知识进行分享.如果有不对的地方,请指出,谢谢!目前深度学习越来越火,学习.使用tensorflow的相关工作者也越来越多.最近在研究tensorflo ...

  4. day-11 python自带库实现2层简单神经网络算法

    深度神经网络算法,是基于神经网络算法的一种拓展,其层数更深,达到多层,本文以简单神经网络为例,利用梯度下降算法进行反向更新来训练神经网络权重和偏向参数,文章最后,基于Python 库实现了一个简单神经 ...

  5. python视频 神经网络 Tensorflow

    python视频 神经网络 Tensorflow 模块 视频教程 (带源码) 所属网站分类: 资源下载 > python视频教程 作者:smile 链接:http://www.pythonhei ...

  6. TensorFlow初探之简单神经网络训练mnist数据集(TensorFlow2.0代码)

    from __future__ import print_function from tensorflow.examples.tutorials.mnist import input_data #加载 ...

  7. tensorflow学习之(五)构造简单神经网络 并展示拟合过程

    # def 添加层 如何构造神经网络 并展示拟合过程 import tensorflow as tf import numpy as np import matplotlib.pyplot as pl ...

  8. 吴裕雄 python 神经网络——TensorFlow 三层简单神经网络的前向传播算法

    import tensorflow as tf w1= tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1)) w2= tf.Variable( ...

  9. 使用RStudio学习一个简单神经网络

    数据准备 1.收集数据 UC Irvine Machine Learning Repository-Concrete Compressive Strength Data Set 把下载到的Concre ...

随机推荐

  1. hdu 2444 The Accomodation of Students 判断二分图+二分匹配

    The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  2. redis的过期策略以及内存淘汰机制

    redis采用的是定期删除+惰性删除策略. 为什么不用定时删除策略? 定时删除,用一个定时器来负责监视key,过期则自动删除.虽然内存及时释放,但是十分消耗CPU资源.在大并发请求下,CPU要将时间应 ...

  3. maven3常用命令、java项目搭建、web项目搭建

    ------------------------------maven3常用命令--------------------------- 1.常用命令 1)创建一个Project mvn archety ...

  4. vue2.0 组件和v-model

    本文适合初学组件编写的同学阅读. 乍一看这个标题,可能会有疑问:v-model和组件也能扯到一起? 我打算写这篇文章的时候,也是这么想的.咱们按简历的那一套STAR法则来梳理一下这篇文章: 情景[Si ...

  5. C#使用(NamedPipe)命名管道通信的例子

    https://blog.csdn.net/yl2isoft/article/details/20228279

  6. 009PHP文件处理——文件处理 file_get_contents file_put_contents fgetc fgets fgetss

    <?php /** * 文件处理 file_get_contents file_put_contents fgetc fgets fgetss */ //fgetc() 传入文件操作句柄.每次获 ...

  7. C语言中的可变参数函数

    C语言编程中有时会遇到一些参数个数可变的函数,例如printf()函数,其函数原型为: int printf( const char* format, ...); 它除了有一个参数format固定以外 ...

  8. angular学习笔记二

     已经了解了angular的基础知识以后,我们继续开始了解angular的基础模块,首先在写angular应用时需要引入angularjs 在使用angular时必须为它定义边界(angular的作用 ...

  9. rxjava 调用retrofit执行网络请求的过程

    retrofit流程图 -1.RxJava调用Retrofit,从requestGtPushSaeUserInfo()中获得被观察者observable,然后new一个观察者向它订阅   0.从业务中 ...

  10. vue: register and import

    components/header-nav/menu-nav.vue <template> <div> menu nav </div> </template& ...