题面

题解:

\[F_j = \sum_{i < j}\frac{q_iq_j}{(i - j)^2} - \sum_{i > j}{\frac{q_iq_j}{(i - j)^2}}
\]

\[E_j = \sum_{i < j}\frac{q_i}{(i - j)^2} - \sum_{i > j}{\frac{q_i}{(i - j)^2}}
\]

对式子的2个部分分别计算。

令\(S_i = i^2\)

\[\sum_{i < j}\frac{q_i}{(i - j)^2} = \sum_{i < j}q_i S_{j - i}
\]

看上去就是卷积形式,FFT计算即可。

对于后半部分,将序列翻转,\(i > j\)就变成\(i < j\)了,而\(S\)可以看做距离,所以不会变,直接计算就好了.

计算完之后需要将序列翻转回来

#include<bits/stdc++.h>
using namespace std;
#define R register int
#define ld double
#define LL long long
#define AC 310000 const double pi = acos(-1);
int n, lim = 1, len;
int Next[AC];
ld q[AC], f[AC]; struct node{
ld x, y;
node(ld xx = 0, ld yy = 0){x = xx, y = yy;}
}a[AC], b[AC], s[AC]; node operator * (node x, node y){return node(x.x * y.x - x.y * y.y, x.x * y.y + x.y * y.x);}
node operator + (node x, node y){return node(x.x + y.x, x.y + y.y);}
node operator - (node x, node y){return node(x.x - y.x, x.y - y.y);} inline int read()
{
int x = 0;char c = getchar();
while(c > '9' || c < '0') c = getchar();
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x;
} void FFT(node *A, int opt)
{
for(R i = 0; i < lim; i ++)
if(i < Next[i]) swap(A[i], A[Next[i]]);
for(R i = 1; i < lim ; i <<= 1)
{
node W(cos(pi / i), opt * sin(pi / i));
for(R r = i << 1, j = 0; j < lim; j += r)
{
node w(1, 0);
for(R k = 0; k < i ; k ++, w = w * W)
{
node x = A[j + k], y = w * A[j + k + i];
A[j + k] = x + y, A[j + k + i] = x - y;
}
}
}
} void pre()
{
n = read() - 1;
for(R i = 0; i <= n; i ++) scanf("%lf", &q[i]);
while(lim <= n + n) lim <<= 1, ++ len;
for(R i = 0; i <= lim; i ++)
Next[i] = (Next[i >> 1] >> 1) | ((i & 1) << (len - 1));
} void work()
{
for(R i = 0; i <= n; i ++)
{
if(i != 0) s[i].x = 1.0 / i / i;
a[i].x = q[i], b[n - i].x = q[i];
}
FFT(s, 1);
FFT(a, 1);
for(R i = 0; i < lim; i ++) a[i] = a[i] * s[i];
FFT(a, -1);
for(R i = 0; i < lim; i ++) f[i] = a[i].x / lim;
FFT(b, 1);
for(R i = 0; i < lim; i ++) b[i] = b[i] * s[i];
FFT(b, -1);
for(R i = 0; i <= n; i ++)
if(i < n - i) swap(b[i], b[n - i]);
for(R i = 0; i < lim; i ++) f[i] -= b[i].x / lim;
for(R i = 0; i <= n; i ++) printf("%.3lf\n", f[i]);
} int main()
{
//freopen("in.in", "r", stdin);
pre();
work();
//fclose(stdin);
return 0;
}

[ZJOI2014]力 FFT的更多相关文章

  1. bzoj3527: [Zjoi2014]力 fft

    bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...

  2. 【BZOJ】3527: [Zjoi2014]力 FFT

    [参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...

  3. P3338 [ZJOI2014]力(FFT)

    题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...

  4. 【bzoj3527】[Zjoi2014]力 FFT

    2016-06-01  21:36:44 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 我就是一个大傻叉 微笑脸 #include&l ...

  5. BZOJ 3527: [Zjoi2014]力(FFT)

    我们看一下这个函数,很容易就把他化为 E=sigma(aj/(i-j)/(i-j))(i>j)-sigma(aj/(i-j)/(i-j))(j>i) 把它拆成两半,可以发现分子与分母下标相 ...

  6. bzoj 3527 [Zjoi2014]力——FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 把 q[ i ] 除掉.设 g[ i ] = i^2 ,有一半的式子就变成卷积了:另一 ...

  7. bzoj 3527 [Zjoi2014] 力 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 看了看TJ才推出来式子,还是不够熟练啊: TJ:https://blog.csdn.n ...

  8. BZOJ 3527 [Zjoi2014]力 ——FFT

    [题目分析] FFT,构造数列进行卷积,挺裸的一道题目诶. 还是写起来并不顺手,再练. [代码] #include <cmath> #include <cstdio> #inc ...

  9. [BZOJ3527][ZJOI2014]力 FFT+数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们 ...

随机推荐

  1. Pomelo.AspNetCore.TimedJob 允许依赖注入

    public static IWebHost BuildWebHost(string[] args) => WebHost.CreateDefaultBuilder(args) .UseStar ...

  2. java程序运行中如果出现异常未被处理,将会被抛到java虚拟机进行处理,程序中断运行后被挂起,在页面输出错误信息(不会输出到console)

    下面的代码中,因为我是使用 for (Iterator<Element> i = el.elements().iterator(); i.hasNext(); ) 迭代器遍历根节点的所有子 ...

  3. javaweb(十)——HttpServletRequest对象(一)

    一.HttpServletRequest介绍 HttpServletRequest对象代表客户端的请求,当客户端通过HTTP协议访问服务器时,HTTP请求头中的所有信息都封装在这个对象中,通过这个对象 ...

  4. Unity学习笔记(2): 如何使物体消失

    Unity使物体消失的三种方法 GameObject.Destroy(gameobjcet); //在下一帧破坏物体 gameObject.SetActive(false); //Unity2017新 ...

  5. 该用哪个:Redis与Memcached之间如何选择呢?

    华为云分布式缓存Redis5.0和Memcached都是华为云DCS的核心产品. 那么在不同的使用场景之下,如何选择Redis5.0和Memcached呢? 就由小编为大家进行详细的数据对比分析吧 R ...

  6. 如何选择合适的Qt5版本?

    注意:这里讨论的是在不编译Qt源码的情况下,推荐下载的官方编译版本. 支持XP SP3以及之后的Windows版本:推荐 Qt5.6 或 Qt5.9,这两个版本是LTS版本(即长期支持版本),Bug较 ...

  7. Linux 150命令之 文件和目录操作命令 chattr lsattr find

    chattr添加隐藏权限 lsattr查看隐藏权限 参数 a文件内容不能删除,只能追加 >> [root@mysql tmp]# chattr +a 1.txt [root@mysql t ...

  8. centos下安装升级python到python3.5

    本文摘抄自:https://www.cnblogs.com/edward2013/p/5289056.html  请支持原版 CentOS7安装Python3.5   2. 安装Python的依赖包 ...

  9. loadrunner socket协议问题归纳(0)

    一.概述         Loadrunner拥有极为丰富的工具箱,供予我们制造出各种奇妙魔法的能力.其中就有此次要讨论的socket套接字操作.     二.socket概述         soc ...

  10. 按Right-BICEP要求的对任务二的测试用例

    测试方法:Right-BICEP 测试计划 1.Right-结果是否正确? 2.B-是否所有的边界条件都是正确的? 3.P-是否满足性能要求? 4.是否有乘除法? 5.是否有括号? 6.是否有真分数? ...