什么是预训练模型

简单来说,预训练模型(pre-trained model)是前人为了解决类似问题所创造出来的模型。你在解决问题的时候,不用从零开始训练一个新模型,可以从在类似问题中训练过的模型入手。

比如说,你如果想做一辆自动驾驶汽车,可以花数年时间从零开始构建一个性能优良的图像识别算法,也可以从Google在ImageNet数据集上训练得到的Inception model(一个预训练模型)起步,来识别图像。

一个预训练模型可能对于你的应用中并不是100%的准确对口,但是它可以为你节省大量功夫。

为什么要使用预训练模型

大大减少训练时间

怎样使用预训练模型

当在训练神经网络的时候我们的目标是什么?我们希望网络能够在多次正向反向迭代的过程中,找到合适的权重。通过使用之前在大数据集上经过训练的预训练模型,我们可以直接使用相应的结构和权重,将它们应用到我们正在面对的问题上。这被称作“迁移学习”,即将预训练的模型“迁移”到我们正在应对的特定问题中。

在选择预训练模型的时候你需要非常仔细,如果你的问题与预训练模型训练情景下又很大的出入,那么模型所得到的预测结果将会非常不准确。

在迁移学习中,这些预训练的网络对于ImageNet数据集外的图片也表现出类很好的泛化性能,既然预训练模型已经训练得很好,我们就不会在段时间内去修改过多的权重,在迁移学习中用到它的时候,往往只是进行微调(fine tune)。

在修改模型的过程中,我们通过会采用比一般训练模型更低的学习速率。

tf模型权重百度云下载地址

http://pan.baidu.com/s/1dE9giOD

VGG16:

WEIGHTS_PATH = ‘https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels.h5’ 
WEIGHTS_PATH_NO_TOP = ‘https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5

VGG19:

TF_WEIGHTS_PATH = ‘https://github.com/fchollet/deep-learning-models/releases/download/v0.4/xception_weights_tf_dim_ordering_tf_kernels.h5’ 
TF_WEIGHTS_PATH_NO_TOP = ‘https://github.com/fchollet/deep-learning-models/releases/download/v0.4/xception_weights_tf_dim_ordering_tf_kernels_notop.h5

RESNET50:

WEIGHTS_PATH = ‘https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels.h5’ 
WEIGHTS_PATH_NO_TOP = ‘https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5

INCEPTIONS_V3:

WEIGHTS_PATH = ‘https://github.com/fchollet/deep-learning-models/releases/download/v0.5/inception_v3_weights_tf_dim_ordering_tf_kernels.h5’ 
WEIGHTS_PATH_NO_TOP = ‘https://github.com/fchollet/deep-learning-models/releases/download/v0.5/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5

XCEPTION:

TF_WEIGHTS_PATH = ‘https://github.com/fchollet/deep-learning-models/releases/download/v0.4/xception_weights_tf_dim_ordering_tf_kernels.h5’ 
TF_WEIGHTS_PATH_NO_TOP = ‘https://github.com/fchollet/deep-learning-models/releases/download/v0.4/xception_weights_tf_dim_ordering_tf_kernels_notop.h5

预训练模型与Keras.applications.models权重资源地址的更多相关文章

  1. Keras.applications.models权重:存储路径及加载

    网络中断原因导致keras加载vgg16等模型权重失败, 直接解决方法是:删掉下载文件,再重新下载 Windows-weights路径: C:\Users\你的用户名\.keras\models Li ...

  2. Caffe2 载入预训练模型(Loading Pre-Trained Models)[7]

    这一节我们主要讲述如何使用预训练模型.Ipython notebook链接在这里. 模型下载 你可以去Model Zoo下载预训练好的模型,或者使用Caffe2的models.download模块获取 ...

  3. 我的Keras使用总结(4)——Application中五款预训练模型学习及其应用

    本节主要学习Keras的应用模块 Application提供的带有预训练权重的模型,这些模型可以用来进行预测,特征提取和 finetune,上一篇文章我们使用了VGG16进行特征提取和微调,下面尝试一 ...

  4. keras中VGG19预训练模型的使用

    keras提供了VGG19在ImageNet上的预训练权重模型文件,其他可用的模型还有VGG16.Xception.ResNet50.InceptionV3 4个. VGG19在keras中的定义: ...

  5. 【tf.keras】tf.keras加载AlexNet预训练模型

    目录 从 PyTorch 中导出模型参数 第 0 步:配置环境 第 1 步:安装 MMdnn 第 2 步:得到 PyTorch 保存完整结构和参数的模型(pth 文件) 第 3 步:导出 PyTorc ...

  6. 我的Keras使用总结(3)——利用bottleneck features进行微调预训练模型VGG16

    Keras的预训练模型地址:https://github.com/fchollet/deep-learning-models/releases 一个稍微讲究一点的办法是,利用在大规模数据集上预训练好的 ...

  7. keras中使用预训练模型进行图片分类

    keras中含有多个网络的预训练模型,可以很方便的拿来进行使用. 安装及使用主要参考官方教程:https://keras.io/zh/applications/   https://keras-cn. ...

  8. keras调用预训练模型分类

    在网上看到一篇博客,地址https://www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-keras ...

  9. Keras下载的数据集以及预训练模型保存在哪里

    Keras下载的数据集在以下目录中: root\\.keras\datasets Keras下载的预训练模型在以下目录中: root\\.keras\models 在win10系统来说,用户主目录是: ...

随机推荐

  1. 设置div滚动条

    这个是很常见的一个任务了,基本是通过CSS去实现滚动条. 滚动条 设置是否显示滚动条主要是在CSS中设置下列的属性: 代码如下: overflow:visible|auto|hidden|scroll ...

  2. JavaScript网页换肤

    使网页背景颜色可选黄/粉 <!doctype html> <html> <head><title>网页换肤</title></head ...

  3. 【jersey】 spring 整合jersey 实现RESTful webservice

         Jersey是一个RESTFUL请求服务JAVA框架,与常规的JAVA编程使用的struts框架类似,它主要用于处理业务逻辑层.与Struts类似,它同样可以和hibernate,sprin ...

  4. eclipse、tomca和jvm的相关内存配置

    1,  设置Eclipse内存使用情况        修改eclipse根目录下的eclipse.ini文件        -vmargs  //虚拟机设置        -Xms40m        ...

  5. len()

    len() 用于统计序列的长度,字符串 .元组 .列表都属于序列 In [1]: str = "hello world" In [2]: len(str) Out[2]: 11

  6. oracle查锁表

    查锁表 select LOCK_INFO.OWNER || '.' || LOCK_INFO.OBJ_NAME as OBJ_NAME, -- 对象名称(已经被锁住) LOCK_INFO.SUBOBJ ...

  7. Android 基于帧布局实现一个进度条 FrameLayout+ProgressBar

    在FrameLayout中添加一个ProgressBar居中 <ProgressBar android:layout_gravity="center" android:id= ...

  8. glassfish任意文件读取漏洞解析

    一.背景: glassfish是一款java编写的跨平台的开源的应用服务器. 二.漏洞原理: 与宽字节SQL注入一致,都是由于unicode编码歧义导致的.具体payload如下构造: http:// ...

  9. MyBatis中typealiases的使用

    转自:http://blog.csdn.net/lelewenzibin/article/details/42713585 问题描述 Mybatis有个代码生成工具,生成的代码里面有mapper.xm ...

  10. 封装自己的getClass

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...