BZOJ 3676 【APIO2014】 回文串
题目链接:回文串
我终于也会回文自动机辣!
其实吗……我觉得回文自动机(听说这玩意儿叫\(PAM\))还是比较\(simple\)的……至少比\(SAM\)友善多了……
所谓回文自动机,每个节点就代表一个回文串。回文自动机的每个节点有两个东西,一个是\(next\),一个是\(fail\)。\(next_{u,x}\)指向节点\(u\)所代表的回文串在两端各添加一个字符\(x\)得到一个新的回文串。\(fail_u\)则指向\(u\)这个节点的最长后缀回文串(不包括本身)。当然还有一个\(len\)数组记录每个节点代表的回文串的长度。
构造自动机之前首先需要构造两个节点\(0\),\(1\)。其中\(len_0=0\),\(len_1=-1\),并且\(fail_0=1\)。\(0\)号点代表的是空串,\(1\)号点代表的是不存在的串。
然后我们考虑如何加入一个字符。我们加入第\(n\)个字符\(c\),从以上个字符结尾的回文串\(x\)开始,一路跳\(fail\)直到我们找到了一个回文串为止。即如果\(s\)数组存了我们需要构建自动机的字符串,那么\(x\)节点满足\(s_n=s_{n-len_x-1}\)。不难发现,这样跳最多到\(1\)号点就终止了。然后,如果\(next_{x,c}\)存在,那么说明这个回文串已经出现过了,给它的次数加\(1\)即可。否则,我们就需要新建一个节点\(p\),那么显然\(len_p=len_x+2\)。到这里,\(len_1=-1\)的好处就显现出来了,让我们少了一个特判。然后,我们还需考虑\(fail_p\)。我们从\(fail_x\)开始找起,每次跳\(fail\),直到找到了一个回文串满足\(s_n=s_{n-len_x-1}\)为止。然后,\(fail_p\)就等于\(next_{x,c}\)了。
说了这么多,写起来还是很好写的。这道题就是板子题。下面贴代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 300010 using namespace std;
typedef long long llg; char a[maxn];
int l[maxn],s[maxn][26],f[maxn],tt,v[maxn],la;
llg ans; void add(int c,int n){
int p=la;
while(a[n-l[p]-1]!=a[n]) p=f[p];
if(!s[p][c]){
int np=++tt,k=f[p]; l[np]=l[p]+2;
while(a[n-l[k]-1]!=a[n]) k=f[k];
f[np]=s[k][c]; s[p][c]=np;
}
v[la=s[p][c]]++;
} llg solve(){
llg ans=0;
for(int i=tt;i>1;i--) v[f[i]]+=v[i],ans=max(ans,1ll*l[i]*v[i]);
return ans;
} int main(){
File("a");
l[++tt]=-1; f[0]=1;
scanf("%s",a+1); int n=strlen(a+1);
for(int i=1;i<=n;i++) add(a[i]-'a',i);
printf("%lld\n",solve());
return 0;
}
BZOJ 3676 【APIO2014】 回文串的更多相关文章
- BZOJ 3676: [Apio2014]回文串
3676: [Apio2014]回文串 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 2013 Solved: 863[Submit][Status ...
- bzoj 3676: [Apio2014]回文串 回文自动机
3676: [Apio2014]回文串 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 844 Solved: 331[Submit][Status] ...
- 字符串(马拉车算法,后缀数组,稀疏表):BZOJ 3676 [Apio2014]回文串
Description 考虑一个只包含小写拉丁字母的字符串s.我们定义s的一个子串t的“出 现值”为t在s中的出现次数乘以t的长度.请你求出s的所有回文子串中的最 大出现值. Input 输入只有一行 ...
- ●BZOJ 3676 [Apio2014]回文串
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3676 题解: 后缀数组,Manacher,二分 首先有一个结论:一个串的本质不同的回文串的个 ...
- BZOJ 3676 [Apio2014]回文串(回文树)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3676 [题目大意] 考虑一个只包含小写拉丁字母的字符串s. 我们定义s的一个子串t的& ...
- bzoj 3676: [Apio2014]回文串【回文自动机】
回文自动机板子 或者是SAM+manacher+倍增,就是manacher求本质不同回文串(让f++的串),然后在SAM倍增查询对应点出现次数 #include<iostream> #in ...
- BZOJ 3676 [Apio2014]回文串 (后缀自动机+manacher/回文自动机)
题目大意: 给你一个字符串,求其中回文子串的长度*出现次数的最大值 明明是PAM裸题我干嘛要用SAM做 回文子串有一个神奇的性质,一个字符串本质不同的回文子串个数是$O(n)$级别的 用$manach ...
- bzoj 3676 [Apio2014]回文串(Manacher+SAM)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3676 [题意] 给定一个字符串,定义一个串的权值为长度*出现次数,求最大权的回文子串. ...
- BZOJ.3676.[APIO2014]回文串(回文树)
BZOJ 洛谷 很久之前写(抄)过一个Hash+Manacher的做法,当时十分懵逼=-= 然而是道回文树模板题. 回文树教程可以看这里(真的挺妙的). 顺便再放上MilkyWay的笔记~ //351 ...
- bzoj 3676: [Apio2014]回文串【后缀自动机+manacher】
用manacher找出本质不同的回文子串放在SAM上跑 #include<iostream> #include<cstdio> #include<cstring> ...
随机推荐
- IOS项目分层
上传者:踏浪帅 分类:其他(Others) 查看次数:408 下载次数:70 上传时间:2016-01-07 大小:3 KB 主项目中的分层主要包含四个模块,Main(主要).Expand(扩展).R ...
- mysql查杀会话
root登陆mysql,查看会话(show processlist\G;): mysql> kill
- 310实验室OTL问题----将写好的C++文件转换成Python文件,并将数据可视化
如图:文件夹 第一处:optimizer文件夹下的:optimizer.h文件中添加你所写代码的头文件 #include <OTL/Optimizer/Reference-NSGA-II/Re ...
- [Gradle] 获取 gradle 命令行参数
project.gradle.startParameter 参考 StartParameter | Gradle API 4.9
- SQL Server使用 LEFT JOIN ON LIKE进行数据关联查询
这是来新公司写的第一篇文章,使用LEFT JOIN ON LIKE处理一下这种问题: SQL视图代码如下: CREATE View [dbo].[VI_SearchCN] AS --搜索产品的文件 ( ...
- Oracle下select语句
先看scott下自带的emp表 empno:编号 ename:名字 Job:职位 mgr:上级编号 hiredate:入职时间 sal:薪水 comm:奖金 deptno:部门编号 部门表dep ...
- Python并行编程(十二):进程同步
1.基本概念 多个进程可以协同工作来完成一项任务,通常需要共享数据.所以在多进程之间保持数据的一致性就很重要,需要共享数据协同的进程必须以适当的策略来读写数据.同步原语和线程的库类似. - Lock: ...
- python 面向对象 __dict__
打印 类或对象中的所有成员 类的构造函数属性 属于对象:类中的公有属性和方法等属于类 打印信息 class schoolMember(object): '''学校成员分类''' member = 0 ...
- MR的shuffle和Spark的shuffle之间的区别
mr的shuffle mapShuffle 数据存到hdfs中是以块进行存储的,每一个块对应一个分片,maptask就是从分片中获取数据的 在某个节点上启动了map Task,map Task读取是通 ...
- NFS-网络文件共享服务
目录 NFS介绍 什么是NFS(Network File System) 搭建NFS服务需要的软件包 极简步骤搭建NFS服务 准备两台机器 配置服务端(nfs-server) 配置客户端(web-cl ...