Tensorflow源码编译,解决tf提示未使用SSE4.1 SSE4.2 AVX警告【转】
本文转载自:https://blog.csdn.net/iTaacy/article/details/72799833
TensorFlow CPU环境 SSE/AVX/FMA 指令集编译
sess.run()出现如下Warning
# 通过pip install tensorflow 来安装tf在 sess.run() 的时候可能会出现
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
- 1
- 2
- 3
- 4
- 5
- 6
这说明你的machine支持这些指令集但是TensorFlow在编译的时候并没有加入这些指令集,需要手动编译TensorFlow才能够加入这些指令集。
# 1. 下载最新的 TensorFlow
$ git clone https://github.com/tensorflow/tensorflow
# 2. 安装 bazel
# mac os
$ brew install bazel
# ubuntu
$ sudo apt-get update && sudo apt-get install bazel
# Windows
$ choco install bazel
# 3. Install TensorFlow Python dependencies
# 如果使用的是Anaconda这部可以跳过
# mac os
$ pip install six numpy wheel
$ brew install coreutils # 安装coreutils for cuda
$ sudo xcode-select -s /Applications/Xcode.app # set build tools
# ubuntu
sudo apt-get install python3-numpy python3-dev python3-pip python3-wheel
sudo apt-get install libcupti-dev
# 4. 开始编译TensorFlow
# 4.1 configure
$ cd tensorflow # cd to the top-level directory created
# configure 的时候要选择一些东西是否支持,这里建议都选N,不然后面会包错,如果支持显卡,就在cuda的时候选择y
$ ./configure # configure
# 4.2 bazel build
# CUP-only
$ bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package
# GPU support
bazel build --config=opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
# 5 安装刚刚编译好的pip 包
# 这里安装的时候官方文档使用的是sudo命令,如果是个人电脑,不建议使用sudo, 直接pip即可。
$ pip install /tmp/tensorflow_pkg/tensorflow-{version}-none-any.whl
# 6 接下来就是验证你是否已经安装成功
$ python -c "import tensorflow as tf; print(tf.Session().run(tf.constant('Hello, TensorFlow')))"
# 然后你就会看到如下输出
b'Hello, TensorFlow'
# 恭喜你,成功编译了tensorflow,Warning也都解决了!
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
报错解决
Do you wish to build TensorFlow with MKL support? [y/N] y
MKL support will be enabled for TensorFlow
Do you wish to download MKL LIB from the web? [Y/n] y
Darwin is unsupported yet
# 这里MKL不支持Darwin(MAC),因此要选择N
ERROR: /Users/***/Documents/tensorflow/tensorflow/core/BUILD:1331:1: C++ compilation of rule '//tensorflow/core:lib_hash_crc32c_accelerate_internal' failed: cc_wrapper.sh failed: error executing command external/local_config_cc/cc_wrapper.sh -U_FORTIFY_SOURCE -fstack-protector -Wall -Wthread-safety -Wself-assign -fcolor-diagnostics -fno-omit-frame-pointer -g0 -O2 '-D_FORTIFY_SOURCE=1' -DNDEBUG ... (remaining 32 argument(s) skipped): com.google.devtools.build.lib.shell.BadExitStatusException: Process exited with status 1.
clang: error: no such file or directory: 'y'
clang: error: no such file or directory: 'y'
# 这里是因为在configure的时候有些包不支持但是选择了y,因此记住一点所有的都选n
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
Reference
Tensorflow源码编译,解决tf提示未使用SSE4.1 SSE4.2 AVX警告【转】的更多相关文章
- tensorflow 源码编译tensorflow 1.1.0到 tensorflow 2.0,ver:1.1.0rc1、1.4.0rc1、1.14.0-rc1、2.0.0b1
目录 tensorflow-build table 更多详细过程信息及下载: tensorflow-build tensorflow 源码编译,提升硬件加速,支持cpu加速指令,suport SSE4 ...
- Tensorflow源码编译常见问题点总结
Tensorflow源码编译分两种:一种是本地源码编译,另一种是针对ARM平台的源码编译. 接下来分别介绍: 一.本地编译 本地编译时,使用的编译工具是本地GCC. 一般会碰到以下问题: 第1个:ex ...
- Google Tensorflow 源码编译(三):tensorflow<v0.5.0>
这几天终于把tensorflow安装上了,中间遇到过不少的问题,这里记录下来.供大家想源码安装的参考. 安装环境:POWER8处理器,Docker容器Ubuntu14.04镜像. Build Tens ...
- Google Tensorflow 源码编译(二):Bazel<v0.1.0>
这几天终于把tensorflow安装上了,中间遇到过不少的问题,这里记录下来.供大家想源码安装的参考. 安装环境:POWER8处理器,Docker容器Ubuntu14.04镜像. Build Baze ...
- Google Tensorflow 源码编译(一):Protobuf<v3.0.0-alpha-3>
这几天终于把tensorflow安装上了,中间遇到过不少的问题,这里记录下来.供大家想源码安装的参考. 安装环境:POWER8处理器,Docker容器Ubuntu14.04镜像. Build Prot ...
- tensorflow 源码编译
https://blog.csdn.net/xsfl1234/article/details/67669707 https://blog.csdn.net/guxi123/article/detail ...
- TensorFlow 源码编译安装
## Install prerequisites (rhel) yum install numpy python-devel python-wheel python-mock ## Install B ...
- Ubuntu 环境 TensorFlow (最新版1.4) 源码编译、安装
Ubuntu 环境 TensorFlow 源码编译安装 基于(Ubuntu 14.04LTS/Ubuntu 16.04LTS/) 一.编译环境 1) 安装 pip sudo apt-get insta ...
- centos7 源码编译安装TensorFlow CPU 版本
一.前言 我们都知道,普通使用pip安装的TensorFlow是万金油版本,当你运行的时候,会提示你不是当前电脑中最优的版本,特别是CPU版本,没有使用指令集优化会让TensorFlow用起来更慢. ...
随机推荐
- CSS写表格
<!DOCTYPE HTML> <html> <head> <meta http-equiv="Content_Type" content ...
- LeetCode——Add Digits
Description: Given a non-negative integer num, repeatedly add all its digits until the result has on ...
- parseInt()解析整数与parsetFloat()解析浮点数
1.parseInt(string,radix) 解析整数 parseInt("dgei23"); // NaN parseInt("3 blind mice" ...
- 正则表达式—RegEx(RegularExpressio)(二)
今日随笔,继续写一些关于正则表达式的东西. 首先补一点昨天的内容: 昨天少说了一个贪婪模式,什么是贪婪模式,比如像+或者*这样的元字符匹配中,会以最大匹配值匹配,这句话是什么意思呢,例如: 定义一个正 ...
- Python汉英/英汉翻译(百度API/有道API)
一.百度API实现 Step1:申请API Key 以前用过BAE,已经有了Api Key,没有的可以去申请 Step2:挺简单,直接看实现的代码吧 ```python #coding:utf-8 i ...
- mysql如何查询日期的列表?
转自:http://blog.csdn.net/liufei198613/article/details/72643345 select @num:=@num+1,date_format(adddat ...
- xp系统报错 windows explorer has encountered a problem and needs to close.We are sorry for the inconvenience
xp系统遇到问题: 打开某个软件提示报错信息, windows explorer has encountered a problem and needs to close.We are sorry f ...
- zabbix_server部署,启动,及端口未监听问题
安装 下载地址:wget https://jaist.dl.sourceforge.net/project/zabbix/ZABBIX%20Latest%20Stable/3.2.6/zabbix-3 ...
- Oracle在linux下命令行无法使用退格键退格,无法使用上下键切换历史命令的解决办法
使用xshell等客户端登录oracl时在命令行无法使用退格键也无法使用上下键切换历史命令可以使用rlwrap解决 1,linux环境 2,下载rlwrap wget http://files.cnb ...
- 南京网络赛E-AC Challenge【状压dp】
Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answe ...