spark 例子groupByKey分组计算2


例子描述:

大概意思为,统计用户使用app的次数排名

原始数据:

000041b232,张三,FC:1A:11:5C:58:34,F8:E7:1E:1E:62:20,15097003,,2016/6/8 17:10,2016/6/8 17:10,690,6218,11=0|12=200,2016/7/5 11:11

000041b232,张三,FC:1A:11:5C:58:34,F8:E7:1E:1E:69:C0,15026002,,2016/6/8 17:10,2016/6/8 17:10,690,6218,11=0|12=200,2016/7/5 11:11

000041b232,张三,FC:1A:11:5C:58:34,F8:E7:1E:1E:62:20,15026002,,2016/6/8 17:10,2016/6/8 17:10,690,6218,11=0|12=200,2016/7/5 11:11

000041b744,张三,FC:1A:11:5C:58:34,F8:E7:1E:1E:62:20,15026002,,2016/6/8 17:10,2016/6/8 17:10,719,4174,6=2016-06-23 08:50:00|7=,2016/7/5 11:11

000041b22f,李四,FC:1A:11:5C:58:34,F8:E7:1E:1E:62:20,15097002,,2016/6/8 17:10,2016/6/8 17:10,856,367,7=,2016/7/5 11:11

000041b1bc,李四,FC:1A:11:5C:58:34,F8:E7:1E:1E:62:20,15026002,,2016/6/8 17:10,2016/6/8 17:10,937,2964,3=北京|4=上海,2016/7/5 11:11

000041cf18,赵六,7C:1D:D9:F4:BE:E0,F8:E7:1E:1E:62:20,15097002,,2016/6/8 17:10,2016/6/8 17:10,665,2669,5=2016-06-22 00:00:00,2016/7/5 11:11

000041b1bc,孙七,7C:1D:D9:F4:BE:E0,38:FF:36:2E:5B:A0,9003000,,2016/6/8 17:10,2016/6/8 17:10,530,245,,2016/7/5 11:11

000041b8f1,王五,FC:1A:11:5C:58:34,38:FF:36:2E:5B:A0,9007000,,2016/6/8 17:11,2016/6/8 17:11,626,6886,,2016/7/5 11:11

000041b8f1,周八,FC:1A:11:5C:58:34,38:FF:36:2E:5B:A0,16500000,,2016/6/8 17:11,2016/6/8 17:11,2532,646,,2016/7/5 11:11

000041966a,李四,FC:1A:11:5C:58:34,38:FF:36:2E:5B:A0,16501000,,2016/6/8 17:11,2016/6/8 17:11,690,454,,2016/7/5 11:11

000041966a,李四,FC:1A:11:5C:58:34,38:FF:36:2E:5B:A0,16501000,,2016/6/8 17:11,2016/6/8 17:11,690,454,,2016/7/5 11:11

结果数据:

周八,人人贷:1

孙七,支付宝:1

赵六,途牛机票:1

王五,快钱:1|天弘基金:1

李四,红岭创投:2|携程机票:1|携程酒店:1|途牛机票:1

张三,途牛酒店:5|携程机票:3


代码片段:

cxRDD0.map {
lines =>
val line = lines.split(",")//逗号分隔数据
//想办法将数据拼成(数据,1)的映射,并且这个地方的数据要相同,可以理解取为用户,APPID,然后当成K,写个数字1当成V,这里使用的字典关联去取的数据
(s"""${line((data_location.getOrElse("USR_NBR", "").toInt))},${buss_location.getOrElse(line((data_location.getOrElse("BUS_ID", "").toInt)), "").split(",", -1)(0)}""", 1)
}.reduceByKey(_ + _).map {//分组
lines =>
//将分组后的数据,以用户为K,其他为V拼成映射,便于后续分组
(s"${lines._1.split(",")(0)}", s"${lines._1.split(",")(1)},${lines._2}")
}.groupByKey().map {//分组
case (k, v) =>
//对APPID数量 V 进行排序
val app = v.map {
x =>
val a = x.split(",")
//拆分APPID 与 数量,这里传递给下面的类型为映射
(a(0), a(1))
//使用sortWith对映射的第二位数字进行排序,需要转换成INT,因为传递过来都是字符
}.toSeq.sortWith(_._2.toInt > _._2.toInt).map {
app =>
//格式化输出
//V:V
s"${app._1}:${app._2}"
}
//格式化输出
//K,V
//K,V1|V2......
s"$k,${app.mkString("|")}"
}.foreach(println)

spark 例子groupByKey分组计算2的更多相关文章

  1. spark 例子groupByKey分组计算

    spark 例子groupByKey分组计算 例子描述: [分组.计算] 主要为两部分,将同类的数据分组归纳到一起,并将分组后的数据进行简单数学计算. 难点在于怎么去理解groupBy和groupBy ...

  2. [Spark][Python]groupByKey例子

    Spark Python 索引页 [Spark][Python]sortByKey 例子 的继续: [Spark][Python]groupByKey例子 In [29]: mydata003.col ...

  3. Spark 两种方法计算分组取Top N

    Spark 分组取Top N运算 大数据处理中,对数据分组后,取TopN是非常常见的运算. 下面我们以一个例子来展示spark如何进行分组取Top的运算. 1.RDD方法分组取TopN from py ...

  4. spark 例子wordcount topk

    spark 例子wordcount topk 例子描述: [单词计算wordcount ] [词频排序topk] 单词计算在代码方便很简单,基本大体就三个步骤 拆分字符串 以需要进行记数的单位为K,自 ...

  5. Spark源码剖析 - 计算引擎

    本章导读 RDD作为Spark对各种数据计算模型的统一抽象,被用于迭代计算过程以及任务输出结果的缓存读写.在所有MapReduce框架中,shuffle是连接map任务和reduce任务的桥梁.map ...

  6. spark 例子倒排索引

    spark 例子倒排索引 例子描述: [倒排索引(InvertedIndex)] 这个例子是在一本讲spark书中看到的,但是样例代码写的太java化,没有函数式编程风格,于是问了些高手,教我写了份函 ...

  7. spark 例子count(distinct 字段)

    spark 例子count(distinct 字段) 例子描述: 有个网站访问日志,有4个字段:(用户id,用户名,访问次数,访问网站) 需要统计: 1.用户的访问总次数去重 2.用户一共访问了多少种 ...

  8. demo2 Kafka+Spark Streaming+Redis实时计算整合实践 foreachRDD输出到redis

    基于Spark通用计算平台,可以很好地扩展各种计算类型的应用,尤其是Spark提供了内建的计算库支持,像Spark Streaming.Spark SQL.MLlib.GraphX,这些内建库都提供了 ...

  9. devexpress表格gridcontrol实现分组,并根据分组计算总计及平均值

    1.devexpress表格控件gridcontrol提供了强大的分组功能,你几乎不用写什么代码就可以实现一个分组功能,并且可根据分组计算总计和平均值.这里我例举了一个实现根据班级分组计算班级总人数, ...

随机推荐

  1. Python学习---Python数据类型1206

    1.1. 字符串格式化 字符格式化输出 占位符 %s  s = string %d  d = digit 整数 %f   f = float 浮点数,约等于小数 #version: python3.2 ...

  2. js的一道经典题目

    今天碰到一道题,里面既包含了匿名函数的知识,也包含了预编译,函数的传参(形参),感觉迷迷糊糊的,所以想着做个总结. var foo={n:1}; (function(foo){ console.log ...

  3. python3程序设计基本方法

    实例 6.升级维护 总结: 打了多年的游击战.突然经过教官的指导,觉得很受益,程序自学需要总结和交流.

  4. 移动App中常见的Web漏洞

    智能手机的存在让网民的生活从PC端开始往移动端转向,现在网民的日常生活需求基本上一部手机就能解决.外卖,办公,社交,银行转账等等都能通过移动端App实现.那么随之也带来了很多信息安全问题,大量的用户信 ...

  5. [TOP10]最受欢迎的10个Metasploit模块和插件

    很多人都想知道最受欢迎的10个Metasploit模块和插件是什么(TOP10),事实上这是一个很难回答的问题,因为什么才叫"Top"?我想每个人都有每个人的看法.于是我们通过调查 ...

  6. JavaScript事件的委派与事件的绑定

    事件的委派 在很多需求中,通常元素是动态创建添加到一个父元素中的,这时候我们点击新增的元素是没有反应的 <script type="text/javascript"> ...

  7. (持续更新) CSS属性持续记录

    可以去除ul的li标签自带的圆点list-style-type: none; 可以将自己的光标改变样式:cursor: pointer;

  8. UVa 1640 - The Counting Problem(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. BZOJ1563:[NOI2009]诗人小G(决策单调性DP)

    Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arr ...

  10. 【vue】饿了么项目-使用webpack打包项目

    1.vue cli给我们提供了npm run build命令打包项目,在packa.json文件中scripts对象中有build属性,当我们执行npm run build时,就执行build对应的& ...