Fundamental theorem of arithmetic 为什么1不是质数
https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic
In number theory, the fundamental theorem of arithmetic, also called the unique factorization theorem or the unique-prime-factorization theorem, states that every integer greater than 1[3] either is a prime number itself or can be represented as the product of prime numbers and that, moreover, this representation is unique, up to (except for) the order of the factors.[4][5][6] For example,
- 1200 = 24 × 31 × 52 = 5 × 2 × 5 × 2 × 3 × 2 × 2 = ...
The theorem says two things for this example: first, that 1200 can be represented as a product of primes, and second, that no matter how this is done, there will always be exactly four 2s, one 3, two 5s, and no other primes in the product.
The requirement that the factors be prime is necessary: factorizations containing composite numbers may not be unique (e.g., 12 = 2 × 6 = 3 × 4).
This theorem is one of the main reasons why 1 is not considered a prime number: if 1 were prime, then factorization into primes would not be unique; for example, 2 = 2 × 1 = 2 × 1 × 1 = ...
Fundamental theorem of arithmetic 为什么1不是质数的更多相关文章
- Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏
Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- Dirichlet's Theorem on Arithmetic Progression
poj3006 Dirichlet's Theorem on Arithmetic Progressions 很显然这是一题有关于素数的题目. 注意数据的范围,爆搜超时无误. 这里要用到筛选法求素数. ...
- POJ 3006 Dirichlet's Theorem on Arithmetic Progressions (素数)
Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- poj 3006 Dirichlet's Theorem on Arithmetic Progressions【素数问题】
题目地址:http://poj.org/problem?id=3006 刷了好多水题,来找回状态...... Dirichlet's Theorem on Arithmetic Progression ...
- poj_3006_Dirichlet's Theorem on Arithmetic Progressions_201407041030
Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- (素数求解)I - Dirichlet's Theorem on Arithmetic Progressions(1.5.5)
Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit cid=1006#sta ...
- POJ 3006 Dirichlet's Theorem on Arithmetic Progressions 素数 难度:0
http://poj.org/problem?id=3006 #include <cstdio> using namespace std; bool pm[1000002]; bool u ...
- poj 3006 Dirichlet's Theorem on Arithmetic Progressions
题目大意:a和d是两个互质的数,则序列a,a+d,a+2d,a+3d,a+4d ...... a+nd 中有无穷多个素数,给出a和d,找出序列中的第n个素数 #include <cstdio&g ...
- POJ 3006 Dirichlet's Theorem on Arithmetic Progressions 快筛质数
题目大意:给出一个等差数列,问这个等差数列的第n个素数是什么. 思路:这题主要考怎样筛素数,线性筛.详见代码. CODE: #include <cstdio> #include <c ...
随机推荐
- linux -- Ubuntu图形界面终端实现注销、关机、重启
linux命令行下的开关机分别为: 注销:logout 关机:shutdown -h now (参数不同,会有不同的关机模式) 重启:shutdown -r now 或 reboot 这些命令都是在l ...
- Kafka学习之一深度解析
背景介绍 Kafka简介 Kafka是一种分布式的,基于发布/订阅的消息系统.主要设计目标如下: 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能 高吞吐 ...
- mac 开发环境安装使用 记录
常用命令 1 查找文件位置: $locate php-fpm 软件变动的话更新locate本地库,可能比较耗时. $sudo /usr/libexec/locate.updatedb 2 查找运行文件 ...
- 关于截取字符串substr和substring两者的区别
https://blog.csdn.net/adley_function/article/details/52130762 substr和substring两个都是截取字符串的. 两者有相同点,如果只 ...
- C#设计模式系列:抽象工厂模式(AbstractFactory)
出自:http://www.cnblogs.com/libingql/archive/2012/12/09/2809754.html 1. 抽象工厂模式简介 1.1 定义 抽象工厂(Abstract ...
- POJ 1337 A Lazy Worker(区间DP, 背包变形)
Description There is a worker who may lack the motivation to perform at his peak level of efficiency ...
- python2.0_day20_bbs系统开发
BBS是一个最简单的项目.在我们把本节课程的代码手敲一遍后,算是实战项目有一个入门.首先一个项目的第一步是完成表设计,在没有完成表结构设计之前,千万不要动手开发(这是老司机的忠告!)废话不多说,现在我 ...
- hex()
hex() 用于将十进制数字转换成十六进制 In [1]: hex(10) Out[1]: '0xa' In [2]: hex(11) Out[2]: '0xb'
- capitalize()
capitalize() 是字符串的一个方法,用于把字符串的第一个字母转换成大写 In [1]: str = 'hello world' In [2]: str.capitalize() Out[2] ...
- 基于Cocos2d-x学习OpenGL ES 2.0系列——初识MVP(3)
在上一篇文章中,我在介绍vertex shader的时候挖了一个坑:CC_MVPMatrix.它其实是一个uniform,每一个Cocos2d-x预定义的shader都包含有这个uniform,但是如 ...