https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic

In number theory, the fundamental theorem of arithmetic, also called the unique factorization theorem or the unique-prime-factorization theorem, states that every integer greater than 1[3] either is a prime number itself or can be represented as the product of prime numbers and that, moreover, this representation is unique, up to (except for) the order of the factors.[4][5][6] For example,

1200 = 24 × 31 × 52 = 5 × 2 × 5 × 2 × 3 × 2 × 2 = ...

The theorem says two things for this example: first, that 1200 can be represented as a product of primes, and second, that no matter how this is done, there will always be exactly four 2s, one 3, two 5s, and no other primes in the product.

The requirement that the factors be prime is necessary: factorizations containing composite numbers may not be unique (e.g., 12 = 2 × 6 = 3 × 4).

This theorem is one of the main reasons why 1 is not considered a prime number: if 1 were prime, then factorization into primes would not be unique; for example, 2 = 2 × 1 = 2 × 1 × 1 = ...

Fundamental theorem of arithmetic 为什么1不是质数的更多相关文章

  1. Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  2. Dirichlet's Theorem on Arithmetic Progression

    poj3006 Dirichlet's Theorem on Arithmetic Progressions 很显然这是一题有关于素数的题目. 注意数据的范围,爆搜超时无误. 这里要用到筛选法求素数. ...

  3. POJ 3006 Dirichlet's Theorem on Arithmetic Progressions (素数)

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  4. poj 3006 Dirichlet's Theorem on Arithmetic Progressions【素数问题】

    题目地址:http://poj.org/problem?id=3006 刷了好多水题,来找回状态...... Dirichlet's Theorem on Arithmetic Progression ...

  5. poj_3006_Dirichlet's Theorem on Arithmetic Progressions_201407041030

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  6. (素数求解)I - Dirichlet's Theorem on Arithmetic Progressions(1.5.5)

    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit cid=1006#sta ...

  7. POJ 3006 Dirichlet's Theorem on Arithmetic Progressions 素数 难度:0

    http://poj.org/problem?id=3006 #include <cstdio> using namespace std; bool pm[1000002]; bool u ...

  8. poj 3006 Dirichlet's Theorem on Arithmetic Progressions

    题目大意:a和d是两个互质的数,则序列a,a+d,a+2d,a+3d,a+4d ...... a+nd 中有无穷多个素数,给出a和d,找出序列中的第n个素数 #include <cstdio&g ...

  9. POJ 3006 Dirichlet&#39;s Theorem on Arithmetic Progressions 快筛质数

    题目大意:给出一个等差数列,问这个等差数列的第n个素数是什么. 思路:这题主要考怎样筛素数,线性筛.详见代码. CODE: #include <cstdio> #include <c ...

随机推荐

  1. gsoap 学习 1-如何使用

    新年伊始,想把onvif和gsoap boa这三个东西学习下,并作下笔记,当然为了省时间,我昨天下午看了一个下午的gsaop官网pdf感触良多,也做了小测试,废话少说,一下也有一些是摘自网友博客,大部 ...

  2. OpenCV_基于局部自适应阈值的图像二值化

    在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理.文本图片和验证码图片中字符的提取.车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等. 较为常用的图像二值化方 ...

  3. [CS]C#操作word

    近期在做的项目已经改了好几版,近期这一版用到了word,当然不是直接使用word,而是使用第三方的ActiveX控件:dsoframer.ocx.此控件的使用和其它控件的使用流程没有不论什么差别.接下 ...

  4. PureMVC--一款多平台MVC框架

    官网:http://puremvc.org/ 下载:https://github.com/PureMVC/puremvc-csharp-multicore-framework/tree/1.1.0 A ...

  5. require() 方法讲解

    require.config({ paths:{ "jquery":"jquery.min", "underscore":"und ...

  6. KAFKA安装+配置详解+常用操作+监控

    http://blog.csdn.net/hadas_wang/article/details/50056381 http://qiyishi.blog.51cto.com/5731577/18575 ...

  7. php 如何得到不含前导0的时分秒

    通常我们获取时分秒是用 date("H:i:s") ,得到的效果是这样的 而如果想获取不含前导0的时分秒的话,就需要把前导0去掉. 如何去掉呢?我们来分析一下,07变7,20还是2 ...

  8. Nginx(四)-- 配置文件之location

    1.location的作用 location主要做定位功能,根据uri来进行不同的定位. 2.location的语法 location [=|~|~*|^~] /uri/ { …} = 开头表示精确匹 ...

  9. Tomcat在Linux下的安装与配置

    一.安装配置JDK 1.官网下载JDK1.7 mkdir /usr/java cd /uar/java wget http://download.oracle.com/otn/java/jdk/7u8 ...

  10. Redhat系列使用ISO或者光盘制作yum本地安装源

    适用系统:redhat系列 示例系统:CentOS 6x86_64 环境:虚拟机   有时候做实验又不能联网的情况下想装一款软件时,经常会搞的头大:难道要去系统镜像中一个个拷出来再用rpm安装?各种依 ...