用于模型的训练
1.说明:
lightgbm.train(params, train_set, num_boost_round=100, valid_sets=None, valid_names=None, fobj=None, feval=None, init_model=None, feature_name='auto', categorical_feature='auto', early_stopping_rounds=None, evals_result=None, verbose_eval=True, learning_rates=None, keep_training_booster=False, callbacks=None)
| Parameters: |
- params (dict) – Parameters for training.
- train_set (Dataset) – Data to be trained.
- num_boost_round (int, optional (default=100)) – Number of boosting iterations.
- valid_sets (list of Datasets or None, optional (default=None)) – List of data to be evaluated during training.
- valid_names (list of string or None, optional (default=None)) – Names of
valid_sets.
- fobj (callable or None, optional (default=None)) – Customized objective function.
- feval (callable or None, optional (default=None)) – Customized evaluation function. Should accept two parameters: preds, train_data. For multi-class task, the preds is group by class_id first, then group by row_id. If you want to get i-th row preds in j-th class, the access way is preds[j * num_data + i]. Note: should return (eval_name, eval_result, is_higher_better) or list of such tuples. To ignore the default metric corresponding to the used objective, set the
metricparameter to the string "None" in params.
- init_model (string, Booster or None, optional (default=None)) – Filename of LightGBM model or Booster instance used for continue training.
- feature_name (list of strings or 'auto', optional (default="auto")) – Feature names. If ‘auto’ and data is pandas DataFrame, data columns names are used.
- categorical_feature (list of strings or int, or 'auto', optional (default="auto")) – Categorical features. If list of int, interpreted as indices. If list of strings, interpreted as feature names (need to specify
feature_name as well). If ‘auto’ and data is pandas DataFrame, pandas categorical columns are used. All values in categorical features should be less than int32 max value (2147483647). All negative values in categorical features will be treated as missing values.
- early_stopping_rounds (int or None, optional (default=None)) – Activates early stopping. The model will train until the validation score stops improving. Validation score needs to improve at least every
early_stopping_rounds round(s) to continue training. Requires at least one validation data and one metric. If there’s more than one, will check all of them. But the training data is ignored anyway. If early stopping occurs, the model will add best_iteration field.
- evals_result (dict or None, optional (default=None)) –
This dictionary used to store all evaluation results of all the items in valid_sets.
Example
With a valid_sets = [valid_set, train_set], valid_names = [‘eval’, ‘train’] and a params = (‘metric’:’logloss’) returns: {‘train’: {‘logloss’: [‘0.48253’, ‘0.35953’, …]}, ‘eval’: {‘logloss’: [‘0.480385’, ‘0.357756’, …]}}.
- verbose_eval (bool or int, optional (default=True)) –
Requires at least one validation data. If True, the eval metric on the valid set is printed at each boosting stage. If int, the eval metric on the valid set is printed at every verbose_eval boosting stage. The last boosting stage or the boosting stage found by using early_stopping_rounds is also printed.
Example
With verbose_eval = 4 and at least one item in evals, an evaluation metric is printed every 4 (instead of 1) boosting stages.
- learning_rates (list, callable or None, optional (default=None)) – List of learning rates for each boosting round or a customized function that calculates
learning_rate in terms of current number of round (e.g. yields learning rate decay).
- keep_training_booster (bool, optional (default=False)) – Whether the returned Booster will be used to keep training. If False, the returned value will be converted into _InnerPredictor before returning. You can still use _InnerPredictor as
init_model for future continue training.
- callbacks (list of callables or None, optional (default=None)) – List of callback functions that are applied at each iteration. See Callbacks in Python API for more information.
|
| Returns: |
booster – The trained Booster model.
|
| Return type: |
Booster
|
2.操作:
用于训练你的模型,返回的是一个训练好的Booster模型
- hdu1032 Train Problem II (卡特兰数)
题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能. (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...
- 清华学堂 列车调度(Train)
列车调度(Train) Description Figure 1 shows the structure of a station for train dispatching. Figure 1 In ...
- Organize Your Train part II-POJ3007模拟
Organize Your Train part II Time Limit: 1000MS Memory Limit: 65536K Description RJ Freight, a Japane ...
- (转) How to Train a GAN? Tips and tricks to make GANs work
How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...
- HDU 1022 Train Problem I
A - Train Problem I Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u ...
- HDU 1022 Train Problem I(栈模拟)
传送门 Description As the new term comes, the Ignatius Train Station is very busy nowadays. A lot of st ...
- ACM/ICPC 之 用双向链表 or 模拟栈 解“栈混洗”问题-火车调度(TSH OJ - Train)
本篇用双向链表和模拟栈混洗过程两种解答方式具体解答“栈混洗”的应用问题 有关栈混洗的定义和解释在此篇:手记-栈与队列相关 列车调度(Train) 描述 某列车调度站的铁道联接结构如Figure 1所示 ...
- GDC2016 Epic Games【Bullet Train】 新风格的VR-FPS的制作方法
追求“舒适”和“快感”的VR游戏设计方法 http://game.watch.impress.co.jp/docs/news/20160318_749016.html [Bullet Tr ...
- ADF_Controller系列5_通过绑定TasksFlow创建Train
2015-02-14 Created By BaoXinjian
随机推荐
- R语言低级绘图函数-points
points 用来在一张图表上添加点,指定好对应的x和y坐标,就可以添加不同形状,颜色的点了: 基本用法: 通过x和y设置点的坐标 plot(1:5, 1:5, xlim = c(0,6), ylim ...
- ubuntu设置中文拼音输入法
转载 http://www.cnblogs.com/zhj5chengfeng/archive/2013/06/23/3150620.html
- 【转】Internet与Intranet区别
提起Internet,大家都知道它是一个蓬勃发展的国际互联网. 而Intranet则是近两年才发展起来的新事物,通常被称作企业内部网. Internet是一组全球范围内信息资源的名字.这些资源非常巨大 ...
- 好的 Web 前端年薪会有多少?
只是一个范围参考,主要是看能力而定. 1. 切图熟练.能写一些JS效果(HTML+CSS+jQuery):5K~10K+2. 具备第一条,并可以熟练用JS开发各种组件:8K-15K+3. 具备第二条, ...
- android webView不简单
手机屏幕大小非常伤程序猿 励志成为一名Javaproject师的我.真的被它伤到了,不仅由于webView的强大.并且这个内容适合各样屏幕大小问题. 想当年苹果project师嘲笑安卓project师 ...
- Java精选笔记_DBUtils工具
DBUtils工具 API介绍 为了更加简单地使用JDBC,Apache组织提供了一个工具类库commons-dbutils组件. 该组件实现了对JDBC的简单封装,可以在不影响性能的情况下极大简化J ...
- B-J UI框架(前端异步框架)
B-JUI 客户端框架 http://xiangzhanyou.com/B-JUI
- Python 流程控制:for
for 循环用于对一个序列进行遍历,用法如下: In [4]: for i in 'abcd': ...: print(i) ...: a b c d In [13]: for i in range( ...
- UIBarButtonItem
1.UINavigationController导航控制器如何使用 UINavigationController可以翻译为导航控制器,在IOS里经常用到. 我们看看它的如何使用: 下面的图显示了导航控 ...
- PHP中str_replace和substr_replace有什么区别?
两个函数的定义:(1)str_replace() 函数替换字符串中的一些字符(区分大小写). 该函数必须遵循下列规则: 如果搜索的字符串是一个数组,那么它将返回一个数组. 如果搜索的字符串是一个数组, ...