用于模型的训练

1.说明:

lightgbm.train(paramstrain_setnum_boost_round=100valid_sets=Nonevalid_names=Nonefobj=Nonefeval=Noneinit_model=Nonefeature_name='auto'categorical_feature='auto'early_stopping_rounds=Noneevals_result=Noneverbose_eval=Truelearning_rates=Nonekeep_training_booster=Falsecallbacks=None)

Parameters:
  • params (dict) – Parameters for training.
  • train_set (Dataset) – Data to be trained.
  • num_boost_round (intoptional (default=100)) – Number of boosting iterations.
  • valid_sets (list of Datasets or Noneoptional (default=None)) – List of data to be evaluated during training.
  • valid_names (list of string or Noneoptional (default=None)) – Names of valid_sets.
  • fobj (callable or Noneoptional (default=None)) – Customized objective function.
  • feval (callable or Noneoptional (default=None)) – Customized evaluation function. Should accept two parameters: preds, train_data. For multi-class task, the preds is group by class_id first, then group by row_id. If you want to get i-th row preds in j-th class, the access way is preds[j * num_data + i]. Note: should return (eval_name, eval_result, is_higher_better) or list of such tuples. To ignore the default metric corresponding to the used objective, set the metricparameter to the string "None" in params.
  • init_model (stringBooster or Noneoptional (default=None)) – Filename of LightGBM model or Booster instance used for continue training.
  • feature_name (list of strings or 'auto'optional (default="auto")) – Feature names. If ‘auto’ and data is pandas DataFrame, data columns names are used.
  • categorical_feature (list of strings or int, or 'auto'optional (default="auto")) – Categorical features. If list of int, interpreted as indices. If list of strings, interpreted as feature names (need to specify feature_name as well). If ‘auto’ and data is pandas DataFrame, pandas categorical columns are used. All values in categorical features should be less than int32 max value (2147483647). All negative values in categorical features will be treated as missing values.
  • early_stopping_rounds (int or Noneoptional (default=None)) – Activates early stopping. The model will train until the validation score stops improving. Validation score needs to improve at least every early_stopping_rounds round(s) to continue training. Requires at least one validation data and one metric. If there’s more than one, will check all of them. But the training data is ignored anyway. If early stopping occurs, the model will add best_iteration field.
  • evals_result (dict or Noneoptional (default=None)) –

    This dictionary used to store all evaluation results of all the items in valid_sets.

    Example

    With a valid_sets = [valid_set, train_set], valid_names = [‘eval’, ‘train’] and a params = (‘metric’:’logloss’) returns: {‘train’: {‘logloss’: [‘0.48253’, ‘0.35953’, …]}, ‘eval’: {‘logloss’: [‘0.480385’, ‘0.357756’, …]}}.

  • verbose_eval (bool or intoptional (default=True)) –

    Requires at least one validation data. If True, the eval metric on the valid set is printed at each boosting stage. If int, the eval metric on the valid set is printed at every verbose_eval boosting stage. The last boosting stage or the boosting stage found by using early_stopping_rounds is also printed.

    Example

    With verbose_eval = 4 and at least one item in evals, an evaluation metric is printed every 4 (instead of 1) boosting stages.

  • learning_rates (listcallable or Noneoptional (default=None)) – List of learning rates for each boosting round or a customized function that calculates learning_rate in terms of current number of round (e.g. yields learning rate decay).
  • keep_training_booster (booloptional (default=False)) – Whether the returned Booster will be used to keep training. If False, the returned value will be converted into _InnerPredictor before returning. You can still use _InnerPredictor as init_model for future continue training.
  • callbacks (list of callables or Noneoptional (default=None)) – List of callback functions that are applied at each iteration. See Callbacks in Python API for more information.
Returns:

booster – The trained Booster model.

Return type:

Booster

2.操作:

  用于训练你的模型,返回的是一个训练好的Booster模型

LightBGM之train的更多相关文章

  1. hdu1032 Train Problem II (卡特兰数)

    题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能.    (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...

  2. 清华学堂 列车调度(Train)

    列车调度(Train) Description Figure 1 shows the structure of a station for train dispatching. Figure 1 In ...

  3. Organize Your Train part II-POJ3007模拟

    Organize Your Train part II Time Limit: 1000MS Memory Limit: 65536K Description RJ Freight, a Japane ...

  4. (转) How to Train a GAN? Tips and tricks to make GANs work

    How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...

  5. HDU 1022 Train Problem I

    A - Train Problem I Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

  6. HDU 1022 Train Problem I(栈模拟)

    传送门 Description As the new term comes, the Ignatius Train Station is very busy nowadays. A lot of st ...

  7. ACM/ICPC 之 用双向链表 or 模拟栈 解“栈混洗”问题-火车调度(TSH OJ - Train)

    本篇用双向链表和模拟栈混洗过程两种解答方式具体解答“栈混洗”的应用问题 有关栈混洗的定义和解释在此篇:手记-栈与队列相关 列车调度(Train) 描述 某列车调度站的铁道联接结构如Figure 1所示 ...

  8. GDC2016 Epic Games【Bullet Train】 新风格的VR-FPS的制作方法

    追求“舒适”和“快感”的VR游戏设计方法   http://game.watch.impress.co.jp/docs/news/20160318_749016.html     [Bullet Tr ...

  9. ADF_Controller系列5_通过绑定TasksFlow创建Train

    2015-02-14 Created By BaoXinjian

随机推荐

  1. MySQL,SQLSERVER,ORACLE获取数据库表名及字段名

    1.MySQL 获取表名: 用“show tables”命令.在程序中也可以采用该命令获取,在返回的RowSet中的“Tables_in_db”读出来.其中“db”是指你的数据库的名称,比如说Tabl ...

  2. php跨form提交方法

    1.php curl function curlPost($url,$params) { $postData = ''; foreach($params as $k => $v) { $post ...

  3. hadoop2.7.1单机和伪集群的搭建-0

    内容中包含 base64string 图片造成字符过多,拒绝显示

  4. C#委托和事件详解

    委托Delegate delegate是C#中的一种类型,它实际上是一个能够持有对某个方法的引用的类.与其它的类不同,delegate类能够拥有一个签名(signature),并且它"只能持 ...

  5. PHP大小写是否敏感问题

    一.大小写敏感 1. 变量名区分大小写 所有变量均区分大小写,包括普通变量以及$_GET,$_POST,$_REQUEST,$_COOKIE,$_SESSION,$GLOBALS,$_SERVER,$ ...

  6. opencv-从图像旋转学习Mat数据訪问

    先看一个简单的样例 代码: // ConsoleApplication3_6_23.cpp : Defines the entry point for the console application. ...

  7. swift--Timer实现定时器功能,每个一段时间执行具体函数,可以重复,也可以只执行一次

    1,创建 //控制器 timer = Timer.scheduledTimer(timeInterval: 0.001, target: self, selector: #selector(Fifte ...

  8. python2.0 s12 day8 _ 堡垒机前戏paramiko模块

    堡垒机前戏 开发堡垒机之前,先来学习Python的paramiko模块,该模块机遇SSH用于连接远程服务器并执行相关操作 paramiko模块是做主机管理的,他模拟了一个ssh. 有两种形式连接形式, ...

  9. Unity3d 手机屏幕自动适配

    我提到手机自动适配的一个方法中:postion和Scale,“比例”概念适配手机.原始资源是480*800 经过实际项目考验,个人感觉: 1,UICamera是自动适配分辨率,UI上也是拉伸.放大UI ...

  10. SDRAM容量的计算方法

    当我在看有关SDRAM的芯片手册的时候,我一直在想这样一个问题:SDRAM的容量它究竟是如何计算的呢?经过查找网上的各种资料,最后在这里给大伙分享一下我的总结! 就以我的开发板的SDRAM的芯片手册的 ...