用于模型的训练
1.说明:
lightgbm.
train
(params, train_set, num_boost_round=100, valid_sets=None, valid_names=None, fobj=None, feval=None, init_model=None, feature_name='auto', categorical_feature='auto', early_stopping_rounds=None, evals_result=None, verbose_eval=True, learning_rates=None, keep_training_booster=False, callbacks=None)
Parameters: |
- params (dict) – Parameters for training.
- train_set (Dataset) – Data to be trained.
- num_boost_round (int, optional (default=100)) – Number of boosting iterations.
- valid_sets (list of Datasets or None, optional (default=None)) – List of data to be evaluated during training.
- valid_names (list of string or None, optional (default=None)) – Names of
valid_sets .
- fobj (callable or None, optional (default=None)) – Customized objective function.
- feval (callable or None, optional (default=None)) – Customized evaluation function. Should accept two parameters: preds, train_data. For multi-class task, the preds is group by class_id first, then group by row_id. If you want to get i-th row preds in j-th class, the access way is preds[j * num_data + i]. Note: should return (eval_name, eval_result, is_higher_better) or list of such tuples. To ignore the default metric corresponding to the used objective, set the
metric parameter to the string "None" in params .
- init_model (string, Booster or None, optional (default=None)) – Filename of LightGBM model or Booster instance used for continue training.
- feature_name (list of strings or 'auto', optional (default="auto")) – Feature names. If ‘auto’ and data is pandas DataFrame, data columns names are used.
- categorical_feature (list of strings or int, or 'auto', optional (default="auto")) – Categorical features. If list of int, interpreted as indices. If list of strings, interpreted as feature names (need to specify
feature_name as well). If ‘auto’ and data is pandas DataFrame, pandas categorical columns are used. All values in categorical features should be less than int32 max value (2147483647). All negative values in categorical features will be treated as missing values.
- early_stopping_rounds (int or None, optional (default=None)) – Activates early stopping. The model will train until the validation score stops improving. Validation score needs to improve at least every
early_stopping_rounds round(s) to continue training. Requires at least one validation data and one metric. If there’s more than one, will check all of them. But the training data is ignored anyway. If early stopping occurs, the model will add best_iteration field.
- evals_result (dict or None, optional (default=None)) –
This dictionary used to store all evaluation results of all the items in valid_sets .
Example
With a valid_sets = [valid_set, train_set], valid_names = [‘eval’, ‘train’] and a params = (‘metric’:’logloss’) returns: {‘train’: {‘logloss’: [‘0.48253’, ‘0.35953’, …]}, ‘eval’: {‘logloss’: [‘0.480385’, ‘0.357756’, …]}}.
- verbose_eval (bool or int, optional (default=True)) –
Requires at least one validation data. If True, the eval metric on the valid set is printed at each boosting stage. If int, the eval metric on the valid set is printed at every verbose_eval boosting stage. The last boosting stage or the boosting stage found by using early_stopping_rounds is also printed.
Example
With verbose_eval = 4 and at least one item in evals, an evaluation metric is printed every 4 (instead of 1) boosting stages.
- learning_rates (list, callable or None, optional (default=None)) – List of learning rates for each boosting round or a customized function that calculates
learning_rate in terms of current number of round (e.g. yields learning rate decay).
- keep_training_booster (bool, optional (default=False)) – Whether the returned Booster will be used to keep training. If False, the returned value will be converted into _InnerPredictor before returning. You can still use _InnerPredictor as
init_model for future continue training.
- callbacks (list of callables or None, optional (default=None)) – List of callback functions that are applied at each iteration. See Callbacks in Python API for more information.
|
Returns: |
booster – The trained Booster model.
|
Return type: |
Booster
|
2.操作:
用于训练你的模型,返回的是一个训练好的Booster模型
- hdu1032 Train Problem II (卡特兰数)
题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能. (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...
- 清华学堂 列车调度(Train)
列车调度(Train) Description Figure 1 shows the structure of a station for train dispatching. Figure 1 In ...
- Organize Your Train part II-POJ3007模拟
Organize Your Train part II Time Limit: 1000MS Memory Limit: 65536K Description RJ Freight, a Japane ...
- (转) How to Train a GAN? Tips and tricks to make GANs work
How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...
- HDU 1022 Train Problem I
A - Train Problem I Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u ...
- HDU 1022 Train Problem I(栈模拟)
传送门 Description As the new term comes, the Ignatius Train Station is very busy nowadays. A lot of st ...
- ACM/ICPC 之 用双向链表 or 模拟栈 解“栈混洗”问题-火车调度(TSH OJ - Train)
本篇用双向链表和模拟栈混洗过程两种解答方式具体解答“栈混洗”的应用问题 有关栈混洗的定义和解释在此篇:手记-栈与队列相关 列车调度(Train) 描述 某列车调度站的铁道联接结构如Figure 1所示 ...
- GDC2016 Epic Games【Bullet Train】 新风格的VR-FPS的制作方法
追求“舒适”和“快感”的VR游戏设计方法 http://game.watch.impress.co.jp/docs/news/20160318_749016.html [Bullet Tr ...
- ADF_Controller系列5_通过绑定TasksFlow创建Train
2015-02-14 Created By BaoXinjian
随机推荐
- 64位程序,long*转long 出错
原因: long*在64位程序中占8个字节,long占4个字节.强转会出错. 解决方法: 把long用long long替换,long long 占8个字节
- e681. 基本的打印程序
Note that (0, 0) of the Graphics object is at the top-left of the actual page, outside the printable ...
- (转)live555从RTSP服务器读取数据到使用接收到的数据流程分析
本文在linux环境下编译live555工程,并用cgdb调试工具对live555工程中的testProgs目录下的openRTSP的执行过程进行了跟踪分析,直到将从socket端读取视频数据并保存为 ...
- NPOI帮助类(Excel转DataTable、DataTable转Excel)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using NPOI.SS. ...
- 【Java面试题】34 List 、Map、Set 区别?
一.Set是最简单的一种集合.集合中的对象不按特定的方式排序,并且没有重复对象. Set接口主要实现了两个实现类: HashSet: HashSet类按照哈希算法来存取集合中的对象,存取速度比较快 T ...
- linux常用命令中篇
1.打印当月的日期
- 清理SYSAUX表空间的WRH$_LATCH_CHILDREN表
周六 被突然起来的短信 轰醒. 一看有63条短信. 都是来之与监控中的.有关表空间大小超过某个警戒值. 发现 SYSAUX表空间超过了15GB 通过以下代码查看SYSAUX表空间的功能占用情况 SEL ...
- 单选按钮选中指定value值
$("input[name='BlogStatus'][value='" + rep.data.Status + "']").prop("checke ...
- HTML&CSS精选笔记_HTML入门
HTML入门 什么是HTML HTML基本文档格式 HTML文档的基本格式,其中主要包括<!DOCTYPE>文档类型声明.<html>根标记.<head>头部标记. ...
- mySQL数据库二:命令行的使用
在做整理的时候,上一篇刚开始只是简单的做了个数据类型的开头,在这里简单说一下mySQL的使用以及它的命令行 1.准备工作 有一个好的开发工具可以几何倍数的增加我们的工作效率,所以,工具是必不可少的,首 ...