用于模型的训练

1.说明:

lightgbm.train(paramstrain_setnum_boost_round=100valid_sets=Nonevalid_names=Nonefobj=Nonefeval=Noneinit_model=Nonefeature_name='auto'categorical_feature='auto'early_stopping_rounds=Noneevals_result=Noneverbose_eval=Truelearning_rates=Nonekeep_training_booster=Falsecallbacks=None)

Parameters:
  • params (dict) – Parameters for training.
  • train_set (Dataset) – Data to be trained.
  • num_boost_round (intoptional (default=100)) – Number of boosting iterations.
  • valid_sets (list of Datasets or Noneoptional (default=None)) – List of data to be evaluated during training.
  • valid_names (list of string or Noneoptional (default=None)) – Names of valid_sets.
  • fobj (callable or Noneoptional (default=None)) – Customized objective function.
  • feval (callable or Noneoptional (default=None)) – Customized evaluation function. Should accept two parameters: preds, train_data. For multi-class task, the preds is group by class_id first, then group by row_id. If you want to get i-th row preds in j-th class, the access way is preds[j * num_data + i]. Note: should return (eval_name, eval_result, is_higher_better) or list of such tuples. To ignore the default metric corresponding to the used objective, set the metricparameter to the string "None" in params.
  • init_model (stringBooster or Noneoptional (default=None)) – Filename of LightGBM model or Booster instance used for continue training.
  • feature_name (list of strings or 'auto'optional (default="auto")) – Feature names. If ‘auto’ and data is pandas DataFrame, data columns names are used.
  • categorical_feature (list of strings or int, or 'auto'optional (default="auto")) – Categorical features. If list of int, interpreted as indices. If list of strings, interpreted as feature names (need to specify feature_name as well). If ‘auto’ and data is pandas DataFrame, pandas categorical columns are used. All values in categorical features should be less than int32 max value (2147483647). All negative values in categorical features will be treated as missing values.
  • early_stopping_rounds (int or Noneoptional (default=None)) – Activates early stopping. The model will train until the validation score stops improving. Validation score needs to improve at least every early_stopping_rounds round(s) to continue training. Requires at least one validation data and one metric. If there’s more than one, will check all of them. But the training data is ignored anyway. If early stopping occurs, the model will add best_iteration field.
  • evals_result (dict or Noneoptional (default=None)) –

    This dictionary used to store all evaluation results of all the items in valid_sets.

    Example

    With a valid_sets = [valid_set, train_set], valid_names = [‘eval’, ‘train’] and a params = (‘metric’:’logloss’) returns: {‘train’: {‘logloss’: [‘0.48253’, ‘0.35953’, …]}, ‘eval’: {‘logloss’: [‘0.480385’, ‘0.357756’, …]}}.

  • verbose_eval (bool or intoptional (default=True)) –

    Requires at least one validation data. If True, the eval metric on the valid set is printed at each boosting stage. If int, the eval metric on the valid set is printed at every verbose_eval boosting stage. The last boosting stage or the boosting stage found by using early_stopping_rounds is also printed.

    Example

    With verbose_eval = 4 and at least one item in evals, an evaluation metric is printed every 4 (instead of 1) boosting stages.

  • learning_rates (listcallable or Noneoptional (default=None)) – List of learning rates for each boosting round or a customized function that calculates learning_rate in terms of current number of round (e.g. yields learning rate decay).
  • keep_training_booster (booloptional (default=False)) – Whether the returned Booster will be used to keep training. If False, the returned value will be converted into _InnerPredictor before returning. You can still use _InnerPredictor as init_model for future continue training.
  • callbacks (list of callables or Noneoptional (default=None)) – List of callback functions that are applied at each iteration. See Callbacks in Python API for more information.
Returns:

booster – The trained Booster model.

Return type:

Booster

2.操作:

  用于训练你的模型,返回的是一个训练好的Booster模型

LightBGM之train的更多相关文章

  1. hdu1032 Train Problem II (卡特兰数)

    题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能.    (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...

  2. 清华学堂 列车调度(Train)

    列车调度(Train) Description Figure 1 shows the structure of a station for train dispatching. Figure 1 In ...

  3. Organize Your Train part II-POJ3007模拟

    Organize Your Train part II Time Limit: 1000MS Memory Limit: 65536K Description RJ Freight, a Japane ...

  4. (转) How to Train a GAN? Tips and tricks to make GANs work

    How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...

  5. HDU 1022 Train Problem I

    A - Train Problem I Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

  6. HDU 1022 Train Problem I(栈模拟)

    传送门 Description As the new term comes, the Ignatius Train Station is very busy nowadays. A lot of st ...

  7. ACM/ICPC 之 用双向链表 or 模拟栈 解“栈混洗”问题-火车调度(TSH OJ - Train)

    本篇用双向链表和模拟栈混洗过程两种解答方式具体解答“栈混洗”的应用问题 有关栈混洗的定义和解释在此篇:手记-栈与队列相关 列车调度(Train) 描述 某列车调度站的铁道联接结构如Figure 1所示 ...

  8. GDC2016 Epic Games【Bullet Train】 新风格的VR-FPS的制作方法

    追求“舒适”和“快感”的VR游戏设计方法   http://game.watch.impress.co.jp/docs/news/20160318_749016.html     [Bullet Tr ...

  9. ADF_Controller系列5_通过绑定TasksFlow创建Train

    2015-02-14 Created By BaoXinjian

随机推荐

  1. (转)V4L2 Video overlay, Video output, Video output overlay的区别

    原文地址:http://blog.csdn.net/kickxxx/article/details/7755127 三者都是V4L2定义的接口,英文原文参见 http://v4l2spec.bytes ...

  2. 格局中@null的代码实现方式

    布局中通常会用到@null.如RadioButton常用的技巧通过RadioGroup实现Tab,需要设置android:button="@null".如果要在代码中动态创建控件, ...

  3. pyqt的setObjectName()/findChild()

    根据设置的Name标示查找组件的对象,关键函数:setObjectName()/findChild() findChild()/2:需要两个参数, 参数一:组件的类型,如QLineEdit.QPush ...

  4. BWT转换对字符串进行编码

    今天看了下bowtie 的论文, 里面描述了BWT转换的过程和bowtie的比对算法: NGS测序数据的数据量非常大, 为了更快的处理, 通常需要对数据进行压缩:而BWT实际上就是一种数据转换方法, ...

  5. 查看CentOS系统配置情况命令

    系统 # uname -a # 查看内核/操作系统/CPU信息 # head -n 1 /etc/issue # 查看操作系统版本 # cat /proc/cpuinfo # 查看CPU信息 # ho ...

  6. MySQL数据库行去重复

    1.创立数据表

  7. delphi中设置listview行高的方法

    第一步.在form中放置一个ImageList: 第二步.将ListView的SmallImages设置为第一步中放置的ImageList: 第三部.将imageList的height设置成自己需要的 ...

  8. ASP.NET MVC自定义验证Authorize Attribute(包含cookie helper)

    前几天Insus.NET有在数据库实现过对某一字段进行加密码与解密<使用EncryptByPassPhrase和DecryptByPassPhrase对MS SQLServer某一字段时行加密和 ...

  9. The content of element type "struts" must match "((package|include|bean|constant)*,unknown-handler-s

    <struts> <!-- 配置为开发模式 -->     <constant name="struts.devMode" value="t ...

  10. swift--使用 is 和 as 操作符来实现类型检查和转换 / AnyObject与Any的区别

    声明几个类: //动物类 class Animal{ } //陆地动物类 class terricole: Animal { } //海洋动物类 class SeaAnimals: Animal { ...