原文链接: https://zhuanlan.zhihu.com/p/29119239

卷积层尺寸的计算原理

  • 输入矩阵格式:四个维度,依次为:样本数、图像高度、图像宽度、图像通道数
  • 输出矩阵格式:与输出矩阵的维度顺序和含义相同,但是后三个维度(图像高度、图像宽度、图像通道数)的尺寸发生变化。
  • 权重矩阵(卷积核)格式:同样是四个维度,但维度的含义与上面两者都不同,为:卷积核高度、卷积核宽度、输入通道数、输出通道数(卷积核个数)
  • 输入矩阵、权重矩阵、输出矩阵这三者之间的相互决定关系
    • 卷积核的输入通道数(in depth)由输入矩阵的通道数所决定。(红色标注)
    • 输出矩阵的通道数(out depth)由卷积核的输出通道数所决定。(绿色标注)
    • 输出矩阵的高度和宽度(height, width)这两个维度的尺寸由输入矩阵、卷积核、扫描方式所共同决定。计算公式如下。(蓝色标注)

* 注:以下计算演示均省略掉了 Bias ,严格来说其实每个卷积核都还有一个 Bias 参数。

标准卷积计算举例

以 AlexNet 模型的第一个卷积层为例,
- 输入图片的尺寸统一为 227 x 227 x 3 (高度 x 宽度 x 颜色通道数),
- 本层一共具有96个卷积核,
- 每个卷积核的尺寸都是 11 x 11 x 3。
- 已知 stride = 4, padding = 0,
- 假设 batch_size = 256,
- 则输出矩阵的高度/宽度为 (227 - 11) / 4 + 1 = 55

1 x 1 卷积计算举例

后期 GoogLeNet、ResNet 等经典模型中普遍使用一个像素大小的卷积核作为降低参数复杂度的手段。
从下面的运算可以看到,其实 1 x 1 卷积没有什么神秘的,其作用就是将输入矩阵的通道数量缩减后输出(512 降为 32),并保持它在宽度和高度维度上的尺寸(227 x 227)。

全连接层计算举例

实际上,全连接层也可以被视为是一种极端情况的卷积层,其卷积核尺寸就是输入矩阵尺寸,因此输出矩阵的高度和宽度尺寸都是1。

总结下来,其实只需要认识到,虽然输入的每一张图像本身具有三个维度,但是对于卷积核来讲依然只是一个一维向量。卷积核做的,其实就是与感受野范围内的像素点进行点积(而不是矩阵乘法)。

附:TensorFlow 中卷积层的简单实现

def conv_layer(x, out_channel, k_size, stride, padding):
in_channel = x.shape[3].value
w = tf.Variable(tf.truncated_normal([k_size, k_size, in_channel, out_channel], mean=0, stddev=stddev))
b = tf.Variable(tf.zeros(out_channel))
y = tf.nn.conv2d(x, filter=w, strides=[1, stride, stride, 1], padding=padding)
y = tf.nn.bias_add(y, b)
y = tf.nn.relu(y)
return x
  • 输入 x:[batch, height, width, in_channel]
  • 权重 w:[height, width, in_channel, out_channel]
  • 输出 y:[batch, height, width, out_channel]

CNN中卷积层的计算细节的更多相关文章

  1. 由浅入深:CNN中卷积层与转置卷积层的关系

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷 ...

  2. CNN中卷积层 池化层反向传播

    参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入 ...

  3. TensorFlow与caffe中卷积层feature map大小计算

    刚刚接触Tensorflow,由于是做图像处理,因此接触比较多的还是卷及神经网络,其中会涉及到在经过卷积层或者pooling层之后,图像Feature map的大小计算,之前一直以为是与caffe相同 ...

  4. caffe中卷积层和pooling层计算下一层的特征map的大小

    pool层,其中ceil是向上取整函数 卷积层:

  5. CNN中卷积的意义

    在传统的神经网络中,比如多层感知机(MLP),其输入通常是一个特征向量.需要人工设计特征,然后将用这些特征计算的值组成特征向量.在过去几十年的经验来看,人工找的特征并不总是好用.有时多了,有时少了,有 ...

  6. CNN中感受野大小的计算

    1 感受野的概念 从直观上讲,感受野就是视觉感受区域的大小.在卷积神经网络中,感受野的定义是 卷积神经网络每一层输出的特征图(feature map)上的像素点在原始图像上映射的区域大小. 2 感受野 ...

  7. 深度学习中卷积层和pooling层的输出计算公式(转)

    原文链接:https://blog.csdn.net/yepeng_xinxian/article/details/82380707 1.卷积层的输出计算公式class torch.nn.Conv2d ...

  8. Python3 CNN中卷积和池化的实现--限制为二维输入

    # -*- coding: utf-8 -*- """ Created on Wed Jan 31 14:10:03 2018 @author: markli " ...

  9. CNN:转置卷积输出分辨率计算

    上一篇介绍了卷积的输出分辨率计算,现在这一篇就来写下转置卷积的分辨率计算.转置卷积(Transposed convolution),转置卷积也有叫反卷积(deconvolution)或者fractio ...

随机推荐

  1. CCPC-Wannafly Winter Camp Day2 (Div2, onsite)

    Class $A_i = a \cdot i \% n$ 有 $A_i = k \cdot gcd(a, n)$ 证明: $A_0 = 0, A_x = x \cdot a - y \cdot n$ ...

  2. CCPC-Wannafly Winter Camp Day7 (Div2, onsite)

    Replay Dup4: 啥都不会? 只能看着两位聚聚A题? X: 模拟题不会写, 日常摔锅 u, v分不清, 日常演员 又是自己没理清楚就抢键盘上机导致送了一万个罚时, 日常背锅 A:迷宫 Solv ...

  3. Learning to Rank之Ranking SVM 简介

    排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank简 ...

  4. ac自动机系列

    hdu2222这题说的是在一个1000000的长串中找出n个短串是否在其中出现过 最后输出在长串中出现的个数 #include <iostream> #include <cstdio ...

  5. 20155316 2016-2017-2 《Java程序设计》第8周学习总结

    教材学习内容总结 课堂部分要点 数据结构与算法 与 Java相结合 collection API:数据结构 crypt:密码学 操作系统 考试部分重点 实验楼:Linux第四节 教材:第6章.第14章 ...

  6. wkhtmtopdf--高分辨率HTML转PDF(三)

    代码篇 浏览了很多实例,总找不到既能把HTML保存为PDF,同时实现流抛出的,所以自己琢磨了许久,终于实现了这样两个需求的结合体,下面来贡献一下吧~~ 下面我们来选择一个网页打印下,保存为PDF,而且 ...

  7. oracle定时器job的使用

    对于DBA来说,数据库Job再熟悉不过了,因为经常要数据库定时的自动执行一些脚本,或做数据库备份,或做数据的提炼,或做数据库的性能优化,包括重建索引等等的工作.但是,Oracle定时器Job时间的处理 ...

  8. 【运维技术】CentOS7上从零开始安装LAMP安装织梦DedeCMS教程

    前期准备数据 centos7 系统 安装 appache httpd # 更新httpd yum update httpd # 安装httpd yum install -y httpd # 启动服务 ...

  9. MySQL "Zero date value prohibited" 问题解析

    问题起因 之前一直使用Oracle数据,对MySQL数据库使用不多,因此搞不懂MySQL的日期“0000-00-00 00:00:00”对程序会产生怎样的影响.费了我一下午的时间 -_-^^. 首先: ...

  10. 20145204《Java程序设计》第10周学习总结

    网络编程 网络编程:在两个或两个以上的设备(例如计算机)之间传输数据.程序员所作的事情就是把数据发送到指定的位置,或者接收到指定的数据,这个就是狭义的网络编程范畴.在发送和接收数据时,大部分的程序设计 ...