BZOJ4408: [Fjoi 2016]神秘数【主席树好题】
Description
一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},
1 = 1
2 = 1+1
3 = 1+1+1
4 = 4
5 = 4+1
6 = 4+1+1
7 = 4+1+1+1
8无法表示为集合S的子集的和,故集合S的神秘数为8。
现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间l,r,求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。
Input
第一行一个整数n,表示数字个数。
第二行n个整数,从1编号。
第三行一个整数m,表示询问个数。
以下m行,每行一对整数l,r,表示一个询问。
Output
对于每个询问,输出一行对应的答案。
Sample Input
5
1 2 4 9 10
5
1 1
1 2
1 3
1 4
1 5
Sample Output
2
4
8
8
8
HINT
对于100%的数据点,n,m <= 100000,∑a[i] <= 10^9
思路
这是一个不套路的主席树题...真的是好题
首先发现一个性质,如果当前可以凑出来的区间是\([1,x]\)
那么如果有一个y需要被加进集合中
如果\(y\le x + 1\),那么新的可以表示出来的区间一定是\([1,x+y]\)
否则的话\(x+1\)一定不能被表示出来
但是这样需要按大小顺序考虑每一个数
所以就可以用主席数可持久化一下
然后每次因为在\([1,x+1]\)之间的数都可以被计入贡献
所以可以直接求一个前缀sum就可以了
每次就比较一下,如果不能更新答案或者没有合法答案就可以退出了
复杂度很迷我不会证明
//Author: dream_maker
#include<bits/stdc++.h>
using namespace std;
//----------------------------------------------
//typename
typedef long long ll;
//convenient for
#define fu(a, b, c) for (int a = b; a <= c; ++a)
#define fd(a, b, c) for (int a = b; a >= c; --a)
#define fv(a, b) for (int a = 0; a < (signed)b.size(); ++a)
//inf of different typename
const int INF_of_int = 1e9;
const ll INF_of_ll = 1e18;
//fast read and write
template <typename T>
void Read(T &x) {
bool w = 1;x = 0;
char c = getchar();
while (!isdigit(c) && c != '-') c = getchar();
if (c == '-') w = 0, c = getchar();
while (isdigit(c)) {
x = (x<<1) + (x<<3) + c -'0';
c = getchar();
}
if (!w) x = -x;
}
template <typename T>
void Write(T x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9) Write(x / 10);
putchar(x % 10 + '0');
}
//----------------------------------------------
const int N = 1e5 + 10;
const int M = 2e6 + 10;
int rt[N], ls[M], rs[M], tot = 0;
ll sum[M];
void build(int &t, int l, int r) {
t = ++tot;
ls[t] = rs[t] = sum[t] = 0;
if (l == r) return;
int mid = (l + r) >> 1;
build(ls[t], l, mid);
build(rs[t], mid + 1, r);
}
void insert(int &t, int last, int l, int r, int pos, int vl) {
t = ++tot;
ls[t] = ls[last];
rs[t] = rs[last];
sum[t] = sum[last] + vl;
if (l == r) return;
int mid = (l + r) >> 1;
if (pos <= mid) insert(ls[t], ls[last], l, mid, pos, vl);
else insert(rs[t], rs[last], mid + 1, r, pos, vl);
}
ll query(int t, int last, int l, int r, int pos) {
if (l == r) return sum[t] - sum[last];
int mid = (l + r) >> 1;
if (pos <= mid) return query(ls[t], ls[last], l, mid, pos);
else return sum[ls[t]] - sum[ls[last]] + query(rs[t], rs[last], mid + 1, r, pos);
}
int n, m, q, a[N], b[N], pre[N];
int find_pow(int vl) {
int l = 1, r = m, res = 0;
while (l <= r) {
int mid = (l + r) >> 1;
if (pre[mid] <= vl) res = mid, l = mid + 1;
else r = mid - 1;
}
return res;
}
int main() {
//freopen("input.txt", "r", stdin);
Read(n);
fu(i, 1, n) {
Read(a[i]);
pre[i] = a[i];
}
sort(pre + 1, pre + n + 1);
m = unique(pre + 1, pre + n + 1) - pre - 1;
pre[m + 1] = INF_of_int;
build(rt[0], 1, m);
fu(i, 1, n) {
b[i] = lower_bound(pre + 1, pre + m + 1, a[i]) - pre;
insert(rt[i], rt[i - 1], 1, m, b[i], a[i]);
}
Read(q);
while (q--) {
int l, r; Read(l), Read(r);
ll now = 0;
while (1) {
int pos = find_pow(now + 1);
if (!pos) {++now; break;}
int s = query(rt[r], rt[l - 1], 1, m, pos);
if (s <= now) {
++now;
break;
}
now = s;
}
Write(now), putchar('\n');
}
return 0;
}
BZOJ4408: [Fjoi 2016]神秘数【主席树好题】的更多相关文章
- BZOJ 4408: [Fjoi 2016]神秘数 主席树 + 神题
Code: #include<bits/stdc++.h> #define lson ls[x] #define mid ((l+r)>>1) #define rson rs[ ...
- BZOJ4408&4299[Fjoi 2016]神秘数——主席树
题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = 4+1 6 = ...
- 【bzoj4408】[Fjoi 2016]神秘数 主席树
题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1+1+14 = 45 = 4+16 = 4+1+1 ...
- BZOJ 4408: [Fjoi 2016]神秘数 [主席树]
传送门 题意: 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},8无法表示为集合S的子集的和,故集合S的神秘数为8.现给定n个正整数a[1]. ...
- [BZOJ4408][Fjoi 2016]神秘数
[BZOJ4408][Fjoi 2016]神秘数 试题描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1 ...
- 【BZOJ4408】[Fjoi 2016]神秘数 主席树神题
[BZOJ4408][Fjoi 2016]神秘数 Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1 ...
- BZOJ4408 [Fjoi 2016]神秘数 【主席树】
题目链接 BZOJ4408 题解 假如我们已经求出一个集合所能凑出连续数的最大区间\([1,max]\),那么此时答案为\(max + 1\) 那么我们此时加入一个数\(x\),假若\(x > ...
- bzoj4408 [Fjoi 2016]神秘数 & bzoj4299 Codechef FRBSUM 主席树+二分+贪心
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4299 https://lydsy.com/JudgeOnline/problem.php?id ...
- Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 177 Solved: 128[Submit][Status ...
随机推荐
- httpclient接口测试完整用例以及获取信息的方法
原文地址https://blog.csdn.net/fhaohaizi/article/details/78088075 原文地址https://blog.csdn.net/fhaohaizi/art ...
- BCB中换行 需要 \r\n
例如: fprintf(fp,"\n");无换行效果 fprintf(fp,"\r\n");有换行效果
- rails常用gem
一,开发模式下 1,better_errors 使用全新的页面替换 Rails 默认的错误页面,显示更多的上下文信息,例如源码 和变量的值:配合binding_of_caller可以执行代码查看变量的 ...
- ACM-ICPC 2018 徐州赛区网络预赛 Solution
A. Hard to prepare 题意:有n个客人做成一圈,有$2^k$种面具,对于每种面具有一种面具不能使相邻的两个人戴,共有多少种做法. 思路: 把题意转化成相邻的人不能带同种面具.总数为$( ...
- jQuery中的prop和attr区别
最近在做一个项目用jq时发现一个问题 在谷歌中可以正常出效果 但是在火狐中就是不行 就是这个prop和attr 之前用的是attr方法 但是在火狐中不出效果 于是特意看了两者的区别 主要 ...
- Linux查看网卡UUID另一方法
转自:http://liaoronghui.com/linux-view-network-adapter-uuid-other-law.html 有时我们不小心将/etc/sysconfig/netw ...
- http://www.kankanews.com/ICkengine/archives/18078.shtml
https://github.com/lealife/WeiXin-Private-API
- [置顶] SNMP协议详解<三>
在上篇文章中,说到了SNMPv3主要在安全性方面进行了增强,采用USM(基于用户的安全模型)和VACM(基于视图的访问控制模型)技术.下面我们就主要讲解SNMPv3的报文格式以及基于USM的认证和加密 ...
- 20145204《java程序设计》课程总结
---恢复内容开始--- 20145204<java程序设计>课程总结 每周读书笔记链接汇总: · 20145204<java程序设计>第一周总结 · 20145204< ...
- Javaworkers团队第三周项目总结
第十三.十四周:按照项目设计,逐步完成各个模块的代码,初步完成项目雏形. 基础知识原理 1.TDD(Test Driven Development, 测试驱动开发),TDD的一般步骤如下: 明确当前要 ...