import numpy as np
import xlrd
from sklearn.cluster import KMeans
from sklearn import preprocessing
#胜 平 负 进球 失球 控球率 传球成功率 抢断成功率 射正
# =============================================================================
# data=[[1,1,0,3,1,65.5,77.6,53.8,3,4],[1,0,1,4,3,34.5,57.4,50,2,3],[1,0,1,2,4,41.8,60.5,85.7,2,3],[0,1,1,1,2,58.2,70.8,50,3,1],
# [2,0,0,3,0,34.8,70.3,64.3,4,6],[1,0,1,3,1,68,85.2,50,6,3],[0,1,1,0,2,65.2,79.8,50,2,1],[0,1,1,0,3,32,69.9,66.7,0,1],
# [2,0,0,5,1,54.9,77.2,61.5,7,6],[2,0,0,2,0,70.9,87.6,61.1,7,6],[0,0,2,1,3,29.1,67.5,52.9,2,0],[0,0,2,0,4,45.1,69.8,91.7,1,0],
# [2,0,0,7,0,68,83.7,68.8,5,6],[2,0,0,6,2,61.8,88.2,70.6,5,6],[0,0,2,2,5,32,65.5,50,2,0],[0,0,2,0,8,38.2,79.5,90.9,2,0],
# [2,0,0,6,0,69.5,87.8,81.2,7,6],[2,0,0,8,0,64,84.9,71.4,6,6],[0,0,2,0,10,36,78.3,53.8,0,0],[0,0,2,0,4,30.5,71.5,53.3,0,0],
# [2,0,0,4,2,62.6,81.5,63.6,7,6],[1,0,0,2,1,40,78.7,64.7,3,6],[0,0,1,2,3,30.1,68.8,50,4,0],[0,0,2,1,3,37.4,72.1,80,1,0]]
# =============================================================================
def xlrd_read_data(path):
table = xlrd.open_workbook(path).sheets()[0] #读取第一个表格
row = table.nrows # 行数
col = table.ncols # 列数
datamatrix = np.zeros((row, col))#生成一个nrows行ncols列,且元素均为0的初始矩阵
for x in range(col):
cols = np.matrix(table.col_values(x)) # 把list转换为矩阵进行矩阵操作
datamatrix[:, x] = cols # 按列把数据存进矩阵中
return datamatrix
def standardScaler(datamatrix):
#标准化
scaler=preprocessing.StandardScaler().fit(datamatrix)
return (scaler.transform(datamatrix))
def kmeans(data_stand):
estimator = KMeans(n_clusters=3) #聚为三类球队,构造聚类器
estimator.fit(data_stand)#聚类
label_pred = estimator.labels_#获取聚类标签
centroids = estimator.cluster_centers_#获取聚类中心
inertia = estimator.inertia_ #获取聚类准则的总和
dis=estimator.precompute_distances
print(dis,inertia,centroids)
return label_pred
path = r'c:\Users\Liugengxin\Desktop\亚洲杯.xlsx'
data=xlrd_read_data(path)
data_stand=standardScaler(data) #获得标准化数据
label_pred=kmeans(data_stand)
# =============================================================================
# team=[['阿联酋'],['印度'],['泰国'],['巴林'],
# ['约旦'],['澳大利亚'],['叙利亚'],['巴勒斯坦'],
# ['中国'],['韩国'],['吉尔吉斯斯坦'],['菲律宾'],
# ['伊朗'],['伊拉克'],['越南'],['也门'],
# ['沙特'],['卡塔尔'],['朝鲜'],['黎巴嫩'],
# ['日本'],['乌兹别克斯坦'],['土库曼斯坦'],['阿曼']]
# =============================================================================
team=[['阿联酋'],['印度'],['泰国'],['巴林'],
['约旦'],['澳大利亚'],['叙利亚'],['巴勒斯坦'],
['中国'],['韩国'],['吉尔吉斯斯坦'],['菲律宾'],
['伊朗'],['伊拉克'],['越南'],['也门']]
clustering_predict = np.column_stack((team,label_pred))#合并
first = clustering_predict[12][1]#一流
third = clustering_predict[15][1]#三流 for i in range(len(team)):
if clustering_predict[i][1]==first:clustering_predict[i][1]='亚洲一流'
elif clustering_predict[i][1]==third:clustering_predict[i][1]='亚洲三流'
else :clustering_predict[i][1]='亚洲二流'

K-means之亚洲杯的更多相关文章

  1. KNN 与 K - Means 算法比较

    KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...

  2. 软件——机器学习与Python,聚类,K——means

    K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467. ...

  3. 快速查找无序数组中的第K大数?

    1.题目分析: 查找无序数组中的第K大数,直观感觉便是先排好序再找到下标为K-1的元素,时间复杂度O(NlgN).在此,我们想探索是否存在时间复杂度 < O(NlgN),而且近似等于O(N)的高 ...

  4. 网络费用流-最小k路径覆盖

    多校联赛第一场(hdu4862) Jump Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  5. numpy.ones_like(a, dtype=None, order='K', subok=True)返回和原矩阵一样形状的1矩阵

    Return an array of ones with the same shape and type as a given array. Parameters: a : array_like Th ...

  6. k-means聚类学习

    4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时候上述条件得不到满足,尤其是在 ...

  7. 当我们在谈论kmeans(2)

        本稿为初稿,后续可能还会修改:如果转载,请务必保留源地址,非常感谢! 博客园:http://www.cnblogs.com/data-miner/ 其他:建设中- 当我们在谈论kmeans(2 ...

  8. scikit-learn包的学习资料

    http://scikit-learn.org/stable/modules/clustering.html#k-means http://my.oschina.net/u/175377/blog/8 ...

  9. HDU 3584 Cube (三维 树状数组)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3584 Cube Problem Description Given an N*N*N cube A,  ...

  10. Torch7学习笔记(二)nn Package

    神经网络Package [目前还属于草稿版,等我整个学习玩以后会重新整理] 模块Module module定义了训练神经网络需要的所有基础方法,并且是可以序列化的抽象类. module有两种状态变量: ...

随机推荐

  1. 解决Chrome浏览器访问https提示“您的连接不是私密连接”的问题

    安装fiddler后,使用Chrome访问https网站时,可能会出现以下错误,本文说明如何解决此类问题: “您的连接不是私密连接”.“NET::ERR_CERT_AUTHORITY_INVALID” ...

  2. 网络协议中HTTP,TCP,UDP,Socket,WebSocket的优缺点/区别

    先说一下网络的层级:由下往上分为 物理层.数据链路层.网络层.传输层.会话层.表示层和应用层 1.TCP和UDP TCP:是面向连接的一种传输控制协议.属于传输层协议.TCP连接之后,客户端和服务器可 ...

  3. centos 系统上如何把python升级为3

    第一种方式: SCL 源目前由 CentOS SIG 维护,除了重新编译构建 Red Hat 的 Software Collections 外,还额外提供一些它们自己的软件包. 该源中包含不少程序的更 ...

  4. python学习-python入门

    开始学习python,开始记录. 第一个小程序:登陆系统 功能:1.通过文件名和密码导入用户名和密码~ 2.用户输入用户名和密码 3.将用户输入的用户名进行比对,先判断用户名是否在黑名单里面,如果在黑 ...

  5. Linux 驱动——Button驱动3(poll机制)

    button_drv.c驱动文件: #include <linux/module.h>#include <linux/kernel.h>#include <linux/f ...

  6. 页面商城总结(一)——HTML部分

    学习编程,与君共勉. 在做过一些页面并且参考了许多商城页面后,对代码的书写和风格也有所体会,再次将我的经验分享给大家,希望大家也能够写出整洁有效的代码.本文主要是针对排版的问题进行总结,代码量较少,希 ...

  7. linux下安装python3(转)

    一.Linux下安装Python 二.Linux下Python安装完成后如何使用pip命令 三.Linux下Python安装完成后如何使用yum命令 四.Linux下安装Anaconda 五.Linu ...

  8. blueprint的使用

    第一步:导入蓝图模块: from flask import Blueprint 第二步:创建蓝图对象: #Blueprint必须指定两个参数,admin表示蓝图的名称,__name__表示蓝图所在模块 ...

  9. 记录一次axios请求造成的数组初始化失败

    axios请求是一个异步的请求,简单来讲就是在做其他事情的时候可以把这个先放一边等其他的事情做完后再来做这件事件. 我之前这样调用了一个方法: mounted() { this.first() thi ...

  10. 64位ubuntu16.04系统安装网易云音乐

    64位ubuntu16.04系统安装网易云音乐 1.官网下载安装包:netease-cloud-music_1.1.0_amd64_ubuntu.deb https://music.163.com/# ...